
Randomized methods for finding interpolative decompositions of

very large matrices

Gunnar Martinsson

The University of Colorado at Boulder

Students: Collaborators:

Adrianna Gillman (now at Dartmouth) Edo Liberty (Yahoo research)

Nathan Halko Vladimir Rokhlin (Yale)

Sijia Hao Yoel Shkolnisky (Tel Aviv University)

Patrick Young (now at GeoEye, Inc.) Joel Tropp (Caltech)

Mark Tygert (Courant)

Franco Woolfe (Goldman Sachs)

Outline:

1. Brief review of the “Nyström method” for approximation of low-rank matrices.

2. Some comments on rank-revealing QR factorizations.

3. Constructing Nyström factorizations via randomized sampling.

4. Approximating structured matrices (H-matrices, HSS-matrices, etc).

Notation:

A is a matrix of size m× n. Think of m and n as large.

k is the (numerical) rank of A. Think k ≪ min(m,n).

Nyström approximation: A basic identity

Let A be an m× n matrix of rank k. Let A11 denote the leading k × k block:

A =

 A11 A12

A21 A22


Lemma: If A11 is non-singular, then A22 = A21A

−1
11 A12.

As a consequence, we obtain a factorization

A = C X

m× n m× k k × n

where C =

 A11

A21

 consists of the first k columns of A, and

X = [I A−1
11 A12].

Nyström approximation: Cheap SVD

Recall: A =

 A11 A12

A21 A22

 has rank k and the k × k matrix A11 is non-singular.

Set C =

 A11

A21

 and X = [I A−1
11 A12]. Then A = CX.

The SVD of A can now be computed via four operations:

A =

=QR︷︸︸︷
C X = Q

=ÛΣV∗︷︸︸︷
RX =

=U︷︸︸︷
QÛ ΣV∗ = U Σ V∗

m× n m× k k × n m× k k × k k × n

Note: Each step involves matrices with at most k rows/columns.

The total cost is O(k2(m+ n)).

Note: Forming RX is cheap since RX = R[I A−1
11 A12] = [R Q−1

1 A12].

Nyström approximation: Complications ...

Recall: A =

 A11 A12

A21 A22

 has rank k and the k × k matrix A11 is non-singular.

Complication 1: A11 could be ill-conditioned (or even singular). Then computing

A−1
11 is problematic, and computing A−1

11 A12 or A21A
−1
11 could be problematic.

This is in principle easy to fix via pivoting.

Remedy: Find index vectors I1 ⊂ Zk
m and J1 ⊂ Zk

n such that

det(A(I1, J1))

is maximized. Set I = [I1, Zm\I1] and J = [J1, Zn\J1], partition

A(I, J) =

 A11 A12

A21 A22

 ,

and proceed as before. Then all elements of the matrices A−1
11 A12 or A21A

−1
11 are

bounded in modulus by one. (A direct consequence of Cramer’s rule.)

Caveat: Solving the maximization problem is combinatorially hard.

Nyström approximation: Complications ...

Recall: A(I, J) =

 A11 A12

A21 A22

 has rank k and the k × k matrix A11 is non-singular.

Complication 2: The rank of A is typically not precisely k.

Example: Suppose ϵ is a small number and consider the 2k × 2k matrix

A =

 Ik 0

0 ϵIk



With C =

 Ik

0

, the Nyström approximant is A(nystrom) = CC†A =

 Ik 0

0 0

 . Good.

With C =

 0

ϵIk

, the Nyström approximant is A(nystrom) = CC†A =

 0 0

0 ϵIk

 . Bad.

Nyström approximation: Complications ...

Recall: A(I, J) =

 A11 A12

A21 A22

 has rank k and the k × k matrix A11 is non-singular.

Complication 2: The rank of A is typically not precisely k.

Remedy: Find index vectors I1 ⊂ Zk
m and J1 ⊂ Zk

n such that

det(A(I1, J1))

is maximized.

Nyström approximation: Finding spanning rows/columns can be

intrinsically valuable

Recall: A(I, J) =

 A11 A12

A21 A22

 has rank k and the k × k matrix A11 is non-singular.

Data interpretation: Collect statistical data in a large matrix. By finding a set

of spanning columns/rows, you can identify some variables that “explain” the

data. (Say a small collection of genes among a set of recorded genomes, or a small

number of stocks in a portfolio.)

Preserve data structure: For example, if A is sparse, then the large factors in a

Nyström decomposition are also sparse.

Nyström approximation: Different factorizations

Recall: A(I, J) =

 A11 A12

A21 A22

 has rank k and the k × k matrix A11 is non-singular.

Set C =

 A11

A21

 and R = [A11 A12]. Then (with factors in red submatrices of A):

• A(I, J) = CX with X = [I A−1
11 A12]

• A(I, J) = YR with Y =

 I

A21A
−1
11



• A(I, J) = YA11X with X = [I A−1
11 A12] and Y =

 I

A21A
−1
11


• A(I, J) = CUR with U = A−1

11 .

Note: All factorizations are stable if I and J are chosen properly; except CUR.

Nyström approximation: Summary

Let A be an m× n matrix, let k be a specified rank, let J1 ⊂ Zk
n be an index

vector, let C denote the corresponding collection of columns

C = A(:, J1)

and define the corresponding Nyström approximant via

A(nystrom) = CC†A.

Question: What is the minimal error ||A− A(nystrom)||?

Question: How do you find a “good” index vector J1?

Recall that the singular values {σj}min(m,n)
j=1 of A satisfy

σj+1 = min{||A− B|| : B has rank j}.

Since the Nyström minimization problem is further constrained, we must have

||A− A(nystrom)|| ≥ σk+1.

The standard framework for analyzing questions of this type is in terms of

rank-revealing QR factorizations (RRQR).

A(:, J) = QR = [Q1 | Q2]

 R11 R12

0 R22


Desirable properties:

• The singular values of R11 should approximate the largest singular values of A.

σj(R11) ≈ σj(A) for 1 ≤ j ≤ k.

σj(R11) ≤ σj(A) holds automatically for any j and J .

We seek J such that σj(R11) ≥ 1
p(k,n)σj(A) for some modest p(k, n).

• The “mass” in R22 is the Nyström error and should be as small as possible.

||R22|| ≈ σk+1(A).

σj(R22) ≥ σk+j(A) holds automatically for any j and J .

We seek J such that ||R22|| ≤ p(k, n)σk+1(A) for some modest p(k, n).

• The columns in Q1R11 = A(:, J(1 : k)) should form a good basis for ran(A).

R−1
11 R12 should have elements of moderate size.

(Note that A−1
11 A12 = R−1

11 R12.)

The standard framework for analyzing questions of this type is in terms of

rank-revealing QR factorizations (RRQR).

A(:, J) = QR = [Q1 | Q2]

 R11 R12

0 R22


Desirable properties:

• The singular values of R11 should approximate the largest singular values of A.

σj(R11) ≈ σj(A) for 1 ≤ j ≤ k.

σj(R11) ≤ σj(A) holds automatically for any j and J .

We seek J such that σj(R11) ≥ 1
p(k,n)σj(A) for some modest p(k, n).

• The “mass” in R22 should be as small as possible.

||R22|| ≈ σk+1(A).

σj(R22) ≥ σk+j(A) holds automatically for any j and J .

We seek J such that ||R22|| ≤ p(k, n)σk+1(A) for some modest p(k, n).

• The columns in Q1R11 = A(:, J(1 : k)) should form a good basis for ran(A).

R−1
11 R12 should have elements of moderate size.

(Note that A−1
11 A12 = R−1

11 R12.)

The standard framework for analyzing questions of this type is in terms of

rank-revealing QR factorizations (RRQR).

A(:, J) = QR = [Q1 | Q2]

 R11 R12

0 R22


Desirable properties:

• The singular values of R11 should approximate the largest singular values of A.

σj(R11) ≈ σj(A) for 1 ≤ j ≤ k.

σj(R11) ≤ σj(A) holds automatically for any j and J .

We seek J such that σj(R11) ≥ 1
p(k,n)σj(A) for some modest p(k, n).

• The “mass” in R22 should be as small as possible.

||R22|| ≈ σk+1(A).

σj(R22) ≥ σk+j(A) holds automatically for any j and J .

We seek J such that ||R22|| ≤ p(k, n)σk+1(A) for some modest p(k, n).

• The columns in Q1R11 = A(:, J(1 : k)) should form a good basis for ran(A).

R−1
11 R12 should have elements of moderate size.

(Note that A−1
11 A12 = R−1

11 R12.)

A(:, J) = QR = [Q1 | Q2]

 R11 R12

0 R22


The following bounds can be achieved:

1√
1 + k(n− k)

σj(A) ≤σj(R11) ≤ σj(A)

||R22|| ≤
√

1 + k(n− k)σk+1(A)

|[R−1
11 R12](i, j)| ≤1.

Column-pivoted Gram-Schmidt factorization does not necessarily get close to the

above. (In practice, it usually does, however.) Famous counter-example by Kahan.

A more sophisticated algorithm by Eisenstat and Gu guarantees bounds close to

the achievable (optimal?) bounds reported above. It can require O(mn2) run

time, but “typically” executes faster.

Question: In practical applications, do you really need an RRQR?

The set-up for RRQR is that we are given a rank k, and seek something close to

the very best rank-k Nyström approximant.

Relaxed formulation suitable for many applications:

Given a matrix A, and a tolerance ε, find an index vector J1 such that

||A− A(: , J1)X|| ≤ ε

where X is some matrix whose entries are “small,” and the length of J1 is “compa-

rable” to the ε-rank of A.

Observations:

• Overshooting the rank a bit is typically fine.

(With k denoting the ε-rank, #J1 = k + 10 or even #J1 = 2k is often OK.)

• If you overshoot in the first run, postprocessing (such as computing an SVD)

will reveal the true rank up to precision ε.

Question: In practical applications, do you really need an RRQR?

The set-up for RRQR is that we are given a rank k, and seek something close to

the very best rank-k Nyström approximant.

Relaxed formulation suitable for many applications:

Given a matrix A, and a tolerance ε, find an index vector J1 such that

||A− A(: , J1)X|| ≤ ε

where X is some matrix whose entries are “small,” and the length of J1 is “compa-

rable” to the ε-rank of A.

Solution for small and moderate size problems:

Column pivoted Gram-Schmidt works well most of the time.

(Enforcing orthogonality religiously is crucial, however.)

Question: In practical applications, do you really need an RRQR?

The set-up for RRQR is that we are given a rank k, and seek something close to

the very best rank-k Nyström approximant.

Relaxed formulation suitable for many applications:

Given a matrix A, and a tolerance ε, find an index vector J1 such that

||A− A(: , J1)X|| ≤ ε

where X is some matrix whose entries are “small,” and the length of J1 is “compa-

rable” to the ε-rank of A.

Solution for large size problems:

1. Find (by any means) matrices E and F such that

||A− EF|| ≤ 1√
1 + 4k(n− k)

ε.

2. Find a vector J1 and a matrix X such that

F = F(: , J1)X.

3. Do nothing! Your J1 and X will automatically work for A.

Lemma: Suppose that

A = EF

and that

(1) F = F(:, J1)X.

Then

A = A(:, J1)X.

Proof: Multiply (1) by E from the left:

EF︸︷︷︸
=A

= EF(:, J1)︸ ︷︷ ︸
=A(:,J1)

X.

Lemma: Suppose that

(2) F = F(:, J1)X.

and that

||A− EF|| ≤ 1

1 + ||X||
ε.

Then

||A− A(:, J1)X|| ≤ ε.

Proof: Set

B = EF.

Then

||A− A(:, J1)X|| ≤ ||A− B(:, J1)X︸ ︷︷ ︸
=B

||+ ||B(:, J1)X− A(:, J1)X||

≤ ||A− B||+ ||B(:, J1)− A(:, J1)|| ||X|| ≤
1

1 + ||X||
ε+

1

1 + ||X||
ε||X|| = ε

Note: If X is constructed via RRQR then ||X|| ≤
√

1 + 4k(n− k).

Note: The loss of accuracy is clearly visible in most applications.

Recall: An algorithm for finding X and J1 such that A ≈ A(:, J1)X:

1. Find (by any means) matrices E and F such that A ≈ EF.

2. Find a vector J1 and a matrix X such that F = F(: , J1)X.

3. Do nothing! Your J1 and X will automatically work for A.

Observation: The matrix E is not used. It only needs to exist.

All we need is a collection of vectors that span the row space of A.

This problem is ideally suited for randomized sampling!

A very cheap but sometimes unreliable randomized algorithm:

Objective: Given A, find X and J1 such that A ≈ A(:, J1)X:

Algorithm:

1. Find a matrix F such that A ≈ EF for some matrix E.

(a) Form F by drawing ℓ rows of A “at random.”

2. Find via RRQR a vector J1 and a matrix X such that F = F(: , J1)X.

3. Do nothing. Your J1 and X will automatically work for A.

Procedures of this type can work well for specific classes of matrices.

However, for a general matrix A, you cannot be assured of good performance.

The number of rows needed to attain precision ε can vastly exceed the ε-rank of A.

A reliable randomized algorithm:

Objective: Given A, find X and J1 such that A ≈ A(:, J1)X:

Algorithm:

1. Find a matrix F such that A ≈ EF for some matrix E.

(a) Draw a Gaussian matrix Ω of size ℓ×m. (Think ℓ = k + 10 or ℓ = 2k.)

(b) Form a sample matrix F = ΩA.

2. Find via RRQR a vector J1 and a matrix X such that F = F(: , J1)X.

3. Do nothing. Your J1 and X will automatically work for A.

Cost: ℓ matvecs. Dense operations on matrices with ℓ columns or rows.

Some comments on errors (details later):

• Tight theory exists (see survey paper in June 2011 issue of SIAM Review).

• If the singular values of A decay rapidly, the errors are close to minimal.

• Cheap error estimators can be implemented for the “given precision” case.

A reliable and highly accurate randomized algorithm:

Objective: Given A, find X and J1 such that A ≈ A(:, J1)X:

Algorithm:

1. Find a matrix F such that A ≈ EF for some matrix E.

(a) Draw a Gaussian matrix Ω of size ℓ×m. (Think ℓ = k + 10 or ℓ = 2k.)

(b) Form a sample matrix F = ΩA(A∗A)q where q is a small integer.

Note: Rounding errors can derail the procedure. Remedies exist.

2. Find via RRQR a vector J1 and a matrix X such that F = F(: , J1)X.

3. Do nothing. Your J1 and X will automatically work for A.

Cost: (2q + 1)ℓ matrix-vector multiplications. Dense operations on matrices with

ℓ columns or rows.

Errors: Tight theory exists. The errors can be made arbitrarily close to optimal.

Error estimators can be deployed.

A reliable and fast randomized algorithm:

Objective: Given A, find X and J1 such that A ≈ A(:, J1)X:

Algorithm:

1. Find a matrix F such that A ≈ EF for some matrix E.

(a) Draw an “SRFT” matrix Ω of size ℓ×m. (Think ℓ = 2k.)

(b) Form a sample matrix F = ΩA.

2. Find via RRQR a vector J1 and a matrix X such that F = F(: , J1)X.

3. Do nothing. Your J1 and X will automatically work for A.

Cost: O(mn log(ℓ))!

Errors: Errors are “typically” similar to the Gaussian case but can in principle

be much worse. Adaptive error estimation is a little dicier.

Question: What is the “SRFT” matrix on the previous slide?

SRFT stands for subsampled random Fourier Transform:

Ω = S F D

ℓ×m ℓ×m m×m m×m

where,

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a

uniform distribution on the unit circle in C.

• F is the discrete Fourier transform, Fjk =
1√
m

e−2πi(j−1)(k−1)/m.

• S is a matrix whose entries are all zeros except for a single, randomly placed 1

in each row. (In other words, the action of S is to draw ℓ rows at random

from DF.)

References: Ailon and Chazelle (2006); Liberty, Rokhlin, Tygert, and Woolfe (2006).

The algorithms presented are supported by rigorous theory. For instance:

Theorem: [Halko, Martinsson, Tropp 2009] Fix a real m×n matrix A with singular

values σ1, σ2, σ3, Choose integers k ≥ 1 and p ≥ 2, and draw a (k + p) × m

standard Gaussian random matrix Ω. Construct the sample matrix F = ΩA. Then

E||A− AF†F||Frob ≤
(
1 +

k

p− 1

)1/2
min(m,n)∑

j=k+1

σ2
j

1/2

.

Moreover,

E||A− AF†F|| ≤

(
1 +

√
k

p− 1

)
σk+1 +

e
√
k + p

p

min(m,n)∑
j=k+1

σ2
j

1/2

.

For a proof, see

N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions.” SIAM Review, 53(2),

pp. 217-288, 2011.

Theorem: [Halko, Martinsson, Tropp 2009] Fix a real m×n matrix A with singular

values σ1, σ2, σ3, Choose integers k ≥ 1 and p ≥ 4, and draw an (k + p) × m

standard Gaussian random matrix Ω. Construct the sample matrix F = ΩA. Then

for all u, t ≥ 1,

||A−AF†F|| ≤

[(
1 + t ·

√
3k

p+ 1

)
σk+1 + t · e

√
k + p

p+ 1

(∑
j>k

σ2
j

)1/2]
+ut·e

√
k + p

p+ 1
σk+1,

with failure probability at most 2t−p + e−u2/2.

The theorem can be simplified by by choosing t and u appropriately. For instance,

||A− AF†F|| ≤
[
1 + 9

√
k + p ·

√
min{m,n}

]
σk+1

with failure probability at most 3 · p−p.

Note: There are two sources of error:

(1) Error in randomized sampling:

||A− EF|| ∼
√

k(m− k)σk+1

(2) Error resulting from Nyström approximation:

||A− A(:, J1)X|| ≤
√

1 + 4k(n− k) ||A− EF||.

Combined: ||A− A(:, J1)X|| ∼ k
√
mnσk+1.

Note: The error estimates above are typically pessimistic and should not be used

to guide practical computations. The recommended approach is to construct J1

and X via randomized sampling, and then estimate ||A− A(:, J1)X|| via another

randomized procedure. If the error is too large, then simply add more samples and

compute a new set of prospective spanning columns to C. Repeat as necessary.

Note: The extra error from “Nyström approximation” can be avoided if you do

not insist on using columns of A as the basis.

An algorithm for computing the SVD of a matrix (no Nyström):

1. Draw an ℓ×m Gaussian random matrix Ω.

2. Form an ℓ×m sample matrix F = ΩA.

3. Form a QR factorization F∗ = QR.

(In other words, the columns of Q form an ON basis for the rows of F).

4. Form the ℓ×m matrix B = Q∗A (so that A ≈ QQ∗A = QB).

5. Form the SVD B = ÛΣV∗.

6. Form U = QÛ.

The end result are factors U, Σ, V such that

E||A−UΣV∗|| ≤

(
1 +

√
k

p− 1

)
σk+1 +

e
√
k + p

p

min(m,n)∑
j=k+1

σ2
j

1/2

.

Possible improvements: Use powers of A, use an SRFT instead of a Gaussian, etc.

Variation of the algorithm when A is symmetric positive definite (spd):

Given an orthonormal matrix Q whose columns form an approximate basis for the

range of A, a very useful approximation is:

A ≈ (AQ)
(
Q∗AQ

)−1
(AQ)∗ =

[
(AQ)

(
Q∗AQ

)−1/2
] [

(AQ)
(
Q∗AQ

)−1/2
]∗

= FF∗,

Algorithm for computing the approximate Cholesky factor F:

1. Draw a random matrix Ω and form Y = AΩ.

2. Orthonormalize the columns of Y to form Q.

3. Form the matrices B1 = AQ and B2 = Q∗B1.

4. Perform a Cholesky factorization B2 = C∗C.

5. Form F = B1C
−1 using a triangular solve.

An optional final step is to compute the SVD F = UΣV∗. Then A ≈ U(Σ2)U∗.

Application to structured matrix computations

So far, we have discussed the situation where a matrix A has low rank.

Next, we will describe how randomized sampling can be used to approximate a

matrix A whose off-diagonal blocks have low rank.

In what follows, we make several assumptions on A:

• A and A∗ can rapidly be applied to vectors.

• The cost of evaluating an individual entry of A is small.

• A has off-diagonal blocks of low (numerical) rank.

(The precise sense will be specified in the next several slides.)

Motivating example: A approximates a boundary integral operator.

Block-separable matrices

Consider a matrix A consisting of p× p blocks of size n× n:

A =


D11 A12 A13 A14

A21 D22 A23 A24

A31 A32 D33 A34

A41 A42 A43 D44

 . (Shown for p = 4.)

Core assumption: Each off-diagonal block Aij admits the factorization

Aij = Ui Ãij V∗
j

n× n n× k k × k k × n

where the rank k is significantly smaller than the block size n. (Say k ≈ n/2.)

The critical part of the assumption is that all off-diagonal blocks in the i’th row

use the same basis matrices Ui for their column spaces (and analogously all blocks

in the j’th column use the same basis matrices Vj for their row spaces).

We get A =


D11 U1 Ã12V

∗
2 U1 Ã13V

∗
3 U1 Ã14V

∗
4

U2 Ã21V
∗
1 D22 U2 Ã23V

∗
3 U2 Ã24V

∗
4

U3 Ã31V
∗
1 U3 Ã32V

∗
2 D33 U3 Ã34V

∗
4

U4 Ã41V
∗
1 U4 Ã42V

∗
2 U4 Ã43V

∗
3 D44

 .

Then A admits the factorization:

A =


U1

U2

U3

U4


︸ ︷︷ ︸

=U


0 Ã12 Ã13 Ã14

Ã21 0 Ã23 Ã24

Ã31 Ã32 0 Ã34

Ã41 Ã42 Ã43 0


︸ ︷︷ ︸

=Ã


V∗

1

V∗
2

V∗
3

V∗
4


︸ ︷︷ ︸

=V∗

+


D1

D2

D3

D4


︸ ︷︷ ︸

=D

or

A = U Ã V∗ + D,

p n× p n pn× p k p k × p k p k × p n pn× p n

How to perform a fast matrix-vector product is obvious. We can also invert A . . .

Lemma: [Variation of Woodbury] If an N ×N matrix A admits the factorization

A = U Ã V∗ + D,

p n× p n pn× p k p k × p k p k × p n pn× p n

then

A−1 = E (Ã+ D̂)−1 F∗ + G,

p n× p n pn× p k p k × p k p k × p n pn× p n

where (provided all intermediate matrices are invertible)

D̂ =
(
V∗D−1U

)−1
, E = D−1UD̂, F = (D̂V∗D−1)∗, G = D−1 −D−1UD̂V∗D−1.

Note: All matrices set in blue are block diagonal.

What is the role of the basis matrices Uτ and Vτ?

To answer this question, we introduce some notation.

Let {Iτ}4τ=1 and {Jτ}4τ=1 be partitions of the index vector

[1, 2, 3, . . . , N] = [I1, I2, I3, I4] = [J1, J2, J3, J4]

so that in the factorization

A =


D11 A12 A13 A14

A21 D22 A23 A24

A31 A32 D33 A34

A41 A42 A43 D44


we have

Dτ = A(Iτ , Jτ)

and

Aσ,τ = A(Iσ, Jτ).

(We typically have Iτ = Jτ .)

What is the role of the basis matrices Uτ and Vτ?

Recall our toy example: A =


D11 U1 Ã12V

∗
2 U1 Ã13V

∗
3 U1 Ã14V

∗
4

U2 Ã21V
∗
1 D22 U2 Ã23V

∗
3 U2 Ã24V

∗
4

U3 Ã31V
∗
1 U3 Ã32V

∗
2 D33 U3 Ã34V

∗
4

U4 Ã41V
∗
1 U4 Ã42V

∗
2 U4 Ã43V

∗
3 D44

 .

We see that the columns of V1 must span the row space of the matrix A(Ic1, J1)

where I1 and J1 are the index vectors for the first block and Ic1 = I\I1.

A(Ic1, J1)

The matrix A

What is the role of the basis matrices Uτ and Vτ?

Recall our toy example: A =


D11 U1 Ã12V

∗
2 U1 Ã13V

∗
3 U1 Ã14V

∗
4

U2 Ã21V
∗
1 D22 U2 Ã23V

∗
3 U2 Ã24V

∗
4

U3 Ã31V
∗
1 U3 Ã32V

∗
2 D33 U3 Ã34V

∗
4

U4 Ã41V
∗
1 U4 Ã42V

∗
2 U4 Ã43V

∗
3 D44

 .

We see that the columns of V2 must span the row space of the matrix A(Ic2, J2)

where I2 and J2 are the index vectors for the first block and Ic2 = I\I2.

A(Ic2, J2)

The matrix A

Recall: The block separable structure relies on factorizations such as (for k < n)

Aσ,τ = Uσ Ãσ,τ V∗
τ

n× n n× k k × k k × n

For the representation to be numerically stable, it is critical that the basis

matrices Uτ and Vτ be well-conditioned.

Standard practice is to have Uτ and Vτ be orthonormal (i.e. U∗
τUτ = V∗

τVτ = Ik).

This maximizes stability.

We have decided to instead use interpolatory decompositions in which:

1. Uτ and Vτ each contain the k × k identity matrix as a submatrix.

2. Uτ and Vτ are “reasonably” well-conditioned.

3. Ãσ,τ is a submatrix of A for all σ, τ .

Our choice leads to some loss of accuracy, but enables the construction of

(relatively) simple compression algorithms.

Constructing {Uτ}τ and {Vτ}τ via randomized sampling

Set B = A−D =


0 A12 A13 A14

A21 0 A23 A24

A31 A32 0 A34

A41 A42 A43 0

.

Then the rows of V∗
τ must span the row space of B(: , Jτ).

We use randomized sampling to find a spanning set for B(: , Jτ):

1. Draw an ℓ×N Gaussian random matrix Ω. (Think ℓ = k + 10.)

2. Form a sample matrix S = ΩB = ΩA−ΩD.

3. For each τ , form V∗
τ by performing RRQR on the columns of S(: , Jτ):

S(:, Jτ) = S(:, J̃τ)V
∗
τ .

If {Uτ}τ and {Ĩτ}τ are constructed analogously, then

A(Iσ, Jτ) = Uσ A(Ĩσ, J̃τ)︸ ︷︷ ︸
=Ãσ,τ

V∗
τ when σ ̸= τ.

We have now obtained a factorization

A =


U1

U2

U3

U4


︸ ︷︷ ︸

=U


0 Ã12 Ã13 Ã14

Ã21 0 Ã23 Ã24

Ã31 Ã32 0 Ã34

Ã41 Ã42 Ã43 0


︸ ︷︷ ︸

=Ã


V∗

1

V∗
2

V∗
3

V∗
4


︸ ︷︷ ︸

=V∗

+


D1

D2

D3

D4


︸ ︷︷ ︸

=D

or

A = U Ã V∗ + D,

p n× p n pn× p k p k × p k p k × p n pn× p n

Important: Since we use interpolative factorizations, Ãσ,τ = A(Ĩσ, J̃τ),

so Ã is a submatrix of A−D.

We can recurse!

Recursion results in a telescoping factorization of A:

A = U(3)
(
U(2)

(
U(1)B(0)V(1))∗ + B(1)

)
(V(2))∗ + B(2)

)
(V(3))∗ +D(3),

with the block structure:

U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

All matrices are now block diagonal except B(0), which is small.

Using a telescoping factorization of A

A = U(3)
(
U(2)

(
U(1)B(0)V(1))∗ + B(1)

)
(V(2))∗ + B(2)

)
(V(3))∗ +D(3),

we have a telescoping inversion formula

A−1 = E(3)
(
E(2)

(
E(1) D̂

(0)
F(1))∗ + D̂

(1))
(F(2))∗ + D̂

(2))
(V(3))∗ + D̂

(3)
.

Block structure of factorization:

U(3) U(2) U(1) B(0) (V(1))∗ B(1) (V(2))∗ B(2) (V(3))∗ D(3)

All matrices are now block diagonal except D̂
(0)

, which is small.

Formal definition of a Hierarchically Block Separable (HBS) matrix

Suppose T is a binary tree on the index vector I = [1, 2, 3, . . . , N].

For a node τ in the tree, let Iτ denote the corresponding index vector.

Level 0

Level 1

Level 2

Level 3

I1 = [1, 2, . . . , 400]

I2 = [1, 2, . . . , 200], I3 = [201, 202, . . . , 400]

I4 = [1, 2, . . . , 100], I5 = [101, 102, . . . , 200], . . .

I8 = [1, 2, . . . , 50], I9 = [51, 52, . . . , 100], . . .

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Numbering of nodes in a fully populated binary tree with L = 3 levels.

The root is the original index vector I = I1 = [1, 2, . . . , 400].

Formal definition of a Hierarchically Block Separable (HBS) matrix

Suppose T is a binary tree.

For a node τ in the tree, let Iτ denote the corresponding index vector.

For leaves σ and τ , set Aσ,τ = A(Iσ, Iτ) and suppose that all off-diagonal blocks

satisfy

Aσ,τ = Uσ Ãσ,τ V∗
τ σ ̸= τ

n× n n× k k × k k × n

For non-leaves σ and τ , let {σ1, σ2} denote the children of σ, and let {τ1, τ2}
denote the children of τ . Set

Aσ,τ =

 Ãσ1,τ1 Ãσ1,τ2

Ãσ2,τ1 Ãσ2,τ2


Then suppose that the off-diagonal blocks satisfy

Aσ,τ = Uσ Ãσ,τ V∗
τ σ ̸= τ

2k × 2k 2k × k k × k k × 2k

Name: Size: Function:

For each leaf Dτ n× n The diagonal block A(Iτ , Iτ).

node τ : Uτ n× k Basis for the columns in the blocks in row τ .

Vτ n× k Basis for the rows in the blocks in column τ .

For each parent Bτ 2k × 2k Interactions between the children of τ .

node τ : Uτ 2k × k Basis for the columns in the (reduced) blocks in row τ .

Vτ 2k × k Basis for the rows in the (reduced) blocks in column τ .

An HBS matrix A with a tree T is fully specified if the factors listed above are provided.

Generate an N × ℓ Gaussian random matrix Ω. (think ℓ = k + 10)

Evaluate S = AΩ using the fast matrix-vector multiplier.

loop over levels, finer to coarser, ℓ = L, L− 1, . . . , 2, 1

loop over all nodes τ on level ℓ

if τ is a leaf node then

Iloc = Iτ

Ωloc = Ω(Iτ , :)

Sloc = S(Iτ , :)− A(Iτ , Iτ)Ωloc

else

Let ν1 and ν2 be the two children of τ .

Iloc = [Ĩν1 , Ĩν2]

Ωloc =

 Ων1

Ων2


Sloc =

 Sν1 − A(Ĩν1 , Ĩν2)Ων2

Sν2 − A(Ĩν2 , Ĩν1)Ων1


end if

[Uτ , Jτ] = interpolate(S∗
loc) (i.e. perform RRQR and form R−1

11 R12)

Ωτ = U∗
τ Ωloc

Sτ = Sloc(Jτ , :)

Ĩτ = Iloc(Jτ)

end loop

end loop

For all leaf nodes τ , set Dτ = A(Iτ , Iτ).

For all sibling pairs {ν1, ν2} set Bν1,ν2 = A(Ĩν1 , Ĩν2).

The asymptotic cost of applying the algorithm to an N ×N matrix A is

Ttotal ∼ Tmult × 2 (k + 10) + Trand ×N (k + 10) + Tentry × 2N k + Tflop × cN k2,

where k is an upper bound for the rank of an off-diagonal block of A, and where

Ttotal is the total execution time

Tmult is the cost of a matrix-vector multiply involving A

Trand is the cost of “drawing” a Gaussian random number

Tentry is the cost of evaluating an entry of A

Tflop is the cost of a flop

Important: The matrix vector multiplies can all be executed in parallel.

Specifically, you only need to compute the two matrix-matrix products

A Ω

N ×N N × (k + 10)
and

A∗ Ω

N ×N N × (k + 10)

Numerical example

Let A be a discrete approximations of the boundary integral operator

(3) [Tu](x) = αu(x) +

∫
Γ

K(x, y)u(y) ds(y), x ∈ Γ,

where Γ is the contour shown below, and α and K are chosen as either one of the

following two options:

α = 0 and K(x, y) = log |x− y| (the “single layer” kernel)(4)

α = 1/2 and K(x, y) =
(
n(y) · (x− y)

)
/|x− y|2 (the “double layer” kernel)(5)

For y ∈ Γ, n(y) denotes the unit normal of Γ at y. The single layer operator was

discretized via the trapezoidal rule with a Kapur-Rokhlin end-point modification of the

6th order for handling the singularity in the kernel k(x, y) as y approaches x, resulting in a

symmetric coefficient matrix.

The contour Γ

Numerical example: implementation details

A is a discrete approximation to a boundary integral operator.

The sample matrices S = AΩ and S′ = A∗Ω were evaluated via the Fast Multipole

Method. Observe that two calls to the FMM is sufficient.

The randomized hierarchical procedure was used to compute an approximant

A(approx) in a hierarchically block separable format.

Using a power iteration the following error metric was computed:

e1 =
||A− A(approx)||

||A||

Hardware: A single processor 3.2GHz Pentium IV with 2GB of RAM.

Results: The double layer potential (a well-conditioned matrix)

ϵ = 10−5, ℓ = 50

N Tcompression Tinversion Tmatvec ||A(approx)|| ||G|| e1 e2

400 0.047 0.031 0.000 1.04 3.6 2.6e-6 5.5e-6

800 0.094 0.031 0.016 1.04 3.6 3.1e-6 6.5e-6

1600 0.219 0.094 0.000 1.04 3.5 2.9e-6 6.3e-6

3200 0.406 0.140 0.016 1.04 3.5 2.6e-6 5.4e-6

6400 0.844 0.297 0.031 1.04 3.5 3.4e-6 7.6e-6

12800 1.688 0.578 0.062 1.04 3.6 3.6e-6 7.8e-6

25600 3.344 1.156 0.141 1.04 3.3 3.4e-6 7.3e-6

ϵ = 10−10, ℓ = 100

N Tcompression Tinversion Tmatvec ||A(approx)|| ||G|| e1 e2

400 0.093 0.032 0.000 1.04 3.6 2.1e-11 4.5e-11

800 0.156 0.079 0.000 1.04 3.6 2.0e-11 4.4e-11

1600 0.297 0.109 0.016 1.04 3.6 1.5e-11 3.1e-11

3200 0.579 0.203 0.015 1.04 3.4 1.9e-11 4.0e-11

6400 1.094 0.344 0.047 1.04 3.6 2.5e-11 5.2e-11

12800 2.141 0.687 0.078 1.04 3.6 2.0e-11 4.2e-11

25600 4.093 1.266 0.141 1.04 3.6 3.4e-11 7.1e-11

Times in seconds. Recall e1 =
||A−A(approx)||

||A|| and e2 = ||I− AG||, where G ≈ A−1.

Observation: The FMM itself is much slower than the HBS algebra!

N = 800 N = 1600 N = 3200 N = 6400 N = 12 800 N = 25 600

Nvec = 1 1.328 1.891 2.875 4.531 7.343 13.266

Nvec = 50 1.500 2.266 3.578 5.969 10.531 19.375

Nvec = 100 1.656 2.563 4.110 7.062 12.844 23.891

Time in seconds required by our implementation of the FMM to apply a

matrix of size N × N to Nvec vectors simultaneously. The FMM uses

multipole expansions of length 40, leading to about 15 accurate digits.

Observation:

Being able to compute the ℓ matvecs in parallel is highly advantageous.

Numerical example: Inversion of HBS-matrix

We performed an HBS inversion to compute

G ≈
(
A(approx)

)−1

and evaluated the error metric

e2 = ||I− AG||.

Results: The double layer potential (a well-conditioned matrix)

ϵ = 10−5, ℓ = 50

N Tcompression Tinversion Tmatvec ||A(approx)|| ||G|| e1 e2

400 0.047 0.031 0.000 1.04 3.6 2.6e-6 5.5e-6

800 0.094 0.031 0.016 1.04 3.6 3.1e-6 6.5e-6

1600 0.219 0.094 0.000 1.04 3.5 2.9e-6 6.3e-6

3200 0.406 0.140 0.016 1.04 3.5 2.6e-6 5.4e-6

6400 0.844 0.297 0.031 1.04 3.5 3.4e-6 7.6e-6

12800 1.688 0.578 0.062 1.04 3.6 3.6e-6 7.8e-6

25600 3.344 1.156 0.141 1.04 3.3 3.4e-6 7.3e-6

ϵ = 10−10, ℓ = 100

N Tcompression Tinversion Tmatvec ||A(approx)|| ||G|| e1 e2

400 0.093 0.032 0.000 1.04 3.6 2.1e-11 4.5e-11

800 0.156 0.079 0.000 1.04 3.6 2.0e-11 4.4e-11

1600 0.297 0.109 0.016 1.04 3.6 1.5e-11 3.1e-11

3200 0.579 0.203 0.015 1.04 3.4 1.9e-11 4.0e-11

6400 1.094 0.344 0.047 1.04 3.6 2.5e-11 5.2e-11

12800 2.141 0.687 0.078 1.04 3.6 2.0e-11 4.2e-11

25600 4.093 1.266 0.141 1.04 3.6 3.4e-11 7.1e-11

Times in seconds. Recall e1 =
||A−A(approx)||

||A|| and e2 = ||I− AG||, where G ≈ A−1.

Results: The single layer potential (an ill-conditioned matrix)

ϵ = 10−5, ℓ = 50

N Tcompression Tinversion Tmatvec ||A(approx)|| ||G|| e1 e2

400 0.047 0.031 0.000 1.23 6.4e3 5.1e-6 2.9e-3

800 0.078 0.063 0.000 0.77 1.4e4 5.2e-6 2.4e-3

1600 0.140 0.141 0.016 0.57 1.6e5 1.1e-5 2.0e-2

3200 0.297 0.297 0.031 0.57 2.3e5 5.8e-6 1.2e-2

6400 0.625 0.625 0.062 0.57 1.1e6 2.9e-6 1.4e-2

12800 1.281 1.328 0.141 0.57 4.2e6 3.5e-6 8.0e-2

25600 2.625 2.875 0.265 0.57 5.6e6 6.5e-6 1.2e-1

ϵ = 10−10, ℓ = 100

N Tcompression Tinversion Tmatvec ||A(approx)|| ||G|| e1 e2

400 0.047 0.047 0.000 1.24 6.4e3 3.3e-11 1.5e-8

800 0.109 0.094 0.000 0.75 1.4e4 4.3e-11 2.0e-8

1600 0.203 0.203 0.032 0.57 1.6e5 4.3e-11 1.2e-7

3200 0.422 0.406 0.031 0.57 2.3e5 4.3e-11 1.2e-5

6400 0.843 0.844 0.078 0.57 1.1e6 4.4e-11 4.6e-5

12800 1.687 1.703 0.141 0.57 4.2e6 3.3e-11 2.2e-4

25600 3.407 3.547 0.266 0.57 5.6e6 2.6e-11 2.0e-5

Times in seconds. Recall e1 =
||A−A(approx)||

||A|| and e2 = ||I− AG||, where G ≈ A−1.

Key points:

1. Finding spanning rows and columns of a large matrix can be very useful.

• Faster algorithms.

• Data interpretation.

• Factorizations that preserve structure (e.g. sparsity).

2. There are many different factorizations to choose from.

Take care to not introduce instabilities unnecessarily.

3. Finding “tight” factorizations is a delicate but well-studied subject.

More relaxed formulations admit very easy algorithms and are often adequate.

4. Randomized sampling + row/column selection is a powerful combination.

• Approximation of Hierarchically Block Separable matrices.

References:

• N. Halko, P.G. Martinsson, J. Tropp: Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions SIAM

Review, 53(2), pp. 217–288, 2011.

• P.G. Martinsson: Approximation of Structured Matrices via Randomized Sampling

(arXiv.org #0806.2339) To appear in the SIAM Journal on Matrix Analysis and

applications.

• H. Cheng, Z. Gimbutas, P.G. Martinsson, V. Rokhlin, On the compression of low

rank matrices SIAM Journal of Scientific Computing, 26(4), pp. 1389-1404, 2005

• M. Gu and S.C. Eisenstat: Efficient algorithms for computing a strong rank-revealing

QR factorization SIAM J. Sci. Comput. 17 (1996), no. 4, 848869.

• Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert, A fast randomized

algorithm for the approximation of matrices Applied and Computational Harmonic

Analysis, 25 (3): 335-366, 2008.

• N. Ailon and B. Chazelle, Approximate nearest neighbors and the fast

JohnsonLindenstrauss transform in Proceedings of the 38th Annual ACM

Symposium on Theory of Computing (STOC 06), 2006, pp. 557563.

