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Outline:
1. Brief review of the “Nystrom method” for approximation of low-rank matrices.
2. Some comments on rank-revealing QR factorizations.
3. Constructing Nystrom factorizations via randomized sampling.

4. Approximating structured matrices (H-matrices, HSS-matrices, etc).

Notation:
A is a matrix of size m X n. Think of m and n as large.

k is the (numerical) rank of A. Think k < min(m,n).



Nystrom approximation: A basic identity

Let A be an m X n matrix of rank k. Let A{; denote the leading k x k block:

A1 Ap
Ax; Ay

A =

Lemma: If Ay is non-singular, then Agy = A21A1_11A12.

As a consequence, we obtain a factorization

A = C X
m X n mxk kxn
A1y .
where C = consists of the first £ columns of A, and
Ay

X=1[ A Ap]



Nystrom approximation: Cheap SVD

A1 Ap . . .
Recall: A = has rank k£ and the k x k matrix Aq; is non-singular.
Azi Ay
All 1
Set C = and X = [I A{; A12]. Then A = CX.
Aoy
The SVD of A can now be computed via four operations:
=QR —0xv: =U
= ~~ 7
A — C X = Q RX =QUXV* = U 2 Vv*
m X n mxk kxn mxk kxk kxn

Note: Each step involves matrices with at most k& rows/columns.
The total cost is O(k*(m + n)).

Note: Forming RX is cheap since RX = R[l A;A;p] =[R Qj'Ais].



Nystrom approximation: Complications ...

A1 Ap . . .
Recall: A = has rank k£ and the k x k matrix Aq; is non-singular.

Ar; Ao

Complication 1: Aj; could be ill-conditioned (or even singular). Then computing

A ! is problematic, and computing Aj; A1z or Ay A}l could be problematic.
This is in principle easy to fix via pivoting.
Remedy: Find index vectors I; C ZF and J; C Z* such that

det(A(I1, J1))

is maximized. Set I = [I1, Zy,\I1]| and J = |J1, Z,\J1], partition

A A
AL J) = 11 A2 |
Ax; A

and proceed as before. Then all elements of the matrices A1_11A12 or A21A1_11 are

bounded in modulus by one. (A direct consequence of Cramer’s rule.)

Caveat: Solving the maximization problem is combinatorially hard.



Nystrom approximation: Complications ...

Air A . . .
Recall: A(I,J) = has rank k£ and the k& x k matrix Aj; is non-singular.

Az Ay
Complication 2: The rank of A is typically not precisely k.

Example: Suppose € is a small number and consider the 2k x 2k matrix

A_ I, O
0 Elk
With C = , the Nystrom approximant is Aystrom) — ccta = . Good.
0 0 0
. 0 ) . . . 0 0
With C = , the Nystrom approximant is Anystrom) — cCTA = . Bad.
el 0 el




Nystrom approximation: Complications ...

Ay A
Recall: A(1,J) = T has rank k and the k x k matrix A1; is non-singular.

Az; Ago
Complication 2: The rank of A is typically not precisely k.

Remedy: Find index vectors Iy C ZF and J; C ZF such that
det(A(Il, Jl))

1s maximized.



Nystrom approximation: Finding spanning rows/columns can be

intrinsically valuable

Al A . : .
Recall: A(I,J) = has rank k£ and the k& x k matrix Aj; is non-singular.

Ar; Ax

Data interpretation: Collect statistical data in a large matrix. By finding a set
of spanning columns/rows, you can identify some variables that “explain” the
data. (Say a small collection of genes among a set of recorded genomes, or a small

number of stocks in a portfolio.)

Preserve data structure: For example, if A is sparse, then the large factors in a

Nystrom decomposition are also sparse.



Nystrom approximation: Different factorizations

A;p A

Recall: A(1,J) = has rank k and the k£ x k matrix Aj; is non-singular.
Az A
A
Set C = H and R = [A;; Aj2]. Then (with factors in red submatrices of A):
Az
o A(I,J)=CX with X =1 A}A]

o A(I,J)=YR with Y = 1
Az Aq

e A(I,J)=YA;; X with X=[I A{Ajs] and Y = 1
A2 Ay
e A(I,J) = CUR with U= A}

Note: All factorizations are stable if I and J are chosen properly; except CUR.



Nystrom approximation: Summary

Let A be an m X n matrix, let £ be a specified rank, let J; C ZZ?L be an index

vector, let C denote the corresponding collection of columns
C=A(:;J;)
and define the corresponding Nystrom approrimant via

A(nystrom) _ CCTA

Question: What is the minimal error ||A — Astrom)| |9

Question: How do you find a “good” index vector J;7

Recall that the singular values {aj}r.nin(m’”)

=1 of A satisfy

0j+1 = min{||A — B|| : B has rank j}.
Since the Nystrom minimization problem is further constrained, we must have

||A . A(nystrom)H > 0jit.



The standard framework for analyzing questions of this type is in terms of
rank-revealing QR factorizations (RRQR).
Ry ‘ Ri2

A(;,J)=QR = [Q: | Q2]
0 \ R

Desirable properties:

e The singular values of Ry should approximate the largest singular values of A.
Uj(Rll) ~ O'j(A) for 1 S] < k.

e The “mass” in Rgy is the Nystrom error and should be as small as possible.
IR22|| = o1 (A).

e The columns in Q;Ry; = A(:, J(1 : k)) should form a good basis for ran(A).
R1_11R12 should have elements of moderate size.
(Note that A7'A1s = R;'Ri2.)



The standard framework for analyzing questions of this type is in terms of
rank-revealing QR factorizations (RRQR).
Ry ‘ Ri2

A(:,J) = QR =[Q: | Q]
0 | R

Desirable properties:
e The singular values of Ry should approximate the largest singular values of A.
Uj(Rll) ~ O'j(A) for 1 S] < k.
0i(R11) < 0;(A) holds automatically for any j and J.

e The “mass” in Rgg should be as small as possible.

[IR22|| = o1 (A).
0j(Ra2) > 04 (A) holds automatically for any j and J.

e The columns in Q;Ry; = A(:, J(1 : k)) should form a good basis for ran(A).
R1_11R12 should have elements of moderate size.
(Note that A7'A1s = R;'Ri2.)



The standard framework for analyzing questions of this type is in terms of
rank-revealing QR factorizations (RRQR).
Ry ‘ Ri2

A(:,J) = QR =[Q: | Q]
0 | R

Desirable properties:

e The singular values of Ry; should approximate the largest singular values of A.
0j(R11) = 0j(A) for 1 <j <k.
0j(R11) < 0(A) holds automatically for any j and J.
We seek J such that oj(Ry1) > ma]’(A) for some modest p(k,n).

e The “mass” in Rgg should be as small as possible.
[IR22|| & 041 (A).
0j(Ra2) > 04 (A) holds automatically for any j and J.
We seek J such that ||Ras|| < p(k,n) ori1(A) for some modest p(k,n).

e The columns in Q;Ry; = A(:, J(1 : k)) should form a good basis for ran(A).
R1_11R12 should have elements of moderate size.
(Note that A7'A1s = R;'Ri2.)



A(:;J)=QR=1[Q; | Q2]

0 | R
The following bounds can be achieved:
1
o;(A) <o;(R11) < o;(A
\/1—l—k(n—k) J( )— J( 11)— J( )

|R22|| <v/1+ k(n — k)orp1(A)
IR R2](4, )| <1.

Column-pivoted Gram-Schmidt factorization does not necessarily get close to the

above. (In practice, it usually does, however.) Famous counter-example by Kahan.

A more sophisticated algorithm by Eisenstat and Gu guarantees bounds close to
the achievable (optimal?) bounds reported above. It can require O(mn?) run

time, but “typically” executes faster.



Question: In practical applications, do you really need an RRQR?

The set-up for RRQR is that we are given a rank k, and seek something close to

the very best rank-k Nystrom approximant.

Relaxed formulation suitable for many applications:

Given a matrix A, and a tolerance ¢, find an index vector J; such that
I|A—A(:,J1)X]| <¢

where X is some matrix whose entries are “small,” and the length of J; is “compa-
rable” to the e-rank of A.

Observations:

e Overshooting the rank a bit is typically fine.
(With £ denoting the e-rank, #J; = k + 10 or even #J; = 2k is often OK.)

e If you overshoot in the first run, postprocessing (such as computing an SVD)

will reveal the true rank up to precision ¢.



Question: In practical applications, do you really need an RRQR?

The set-up for RRQR is that we are given a rank £, and seek something close to

the very best rank-k Nystrom approximant.

Relaxed formulation suitable for many applications:

Given a matrix A, and a tolerance ¢, find an index vector J; such that
IA—=A(:, J1)X|| <e

where X is some matrix whose entries are “small,” and the length of J; is “compa-
rable” to the e-rank of A.

Solution for small and moderate size problems:
Column pivoted Gram-Schmidt works well most of the time.

(Enforcing orthogonality religiously is crucial, however.)



Question: In practical applications, do you really need an RRQR?

The set-up for RRQR is that we are given a rank £k, and seek something close to

the very best rank-k Nystrom approximant.

Relaxed formulation suitable for many applications:

Given a matrix A, and a tolerance ¢, find an index vector J; such that
I|A—A(:,J1)X]| <e

where X is some matrix whose entries are “small,” and the length of J; is “compa-
rable” to the e-rank of A.

Solution for large size problems:

1. Find (by any means) matrices E and F such that

IA—EF|| < ! -
V1+4k(n —k)

2. Find a vector J; and a matrix X such that

F=F(:,J)X

3. Do nothing! Your J; and X will automatically work for A.



Lemma: Suppose that

A =EF
and that
(1) F=F(, J1)X
Then
A=A(:J)X.

Proof: Multiply (1) by E from the left:



Lemma: Suppose that

(2) F=F(,J)X.
and that
|A —EF|| < ———=¢.
1+ [|X]|
Then

1A — A(, J)X]|| < e.

Proof: Set

Then

1A = AC, JO)X|| < [[A =B, J1)X || +[[B(:, J1)X = A(:, J1)X]|
N——

=B

1 1

< [IA =B+ B J1) = AG, I X < =g + 7 el Xl = €
| 1+ 1B(:, J1) X T T

Note: If X is constructed via RRQR then [|X|| < /1 + 4k(n — k).

Note: The loss of accuracy is clearly visible in most applications.



Recall: An algorithm for finding X and J; such that A ~ A(:, J;)X:
1. Find (by any means) matrices E and F such that A ~ EF.
2. Find a vector J; and a matrix X such that F = F(: , J;)X.

3. Do nothing! Your J; and X will automatically work for A.

Observation: The matrix E is not used. It only needs to exist.

All we need is a collection of vectors that span the row space of A.

This problem is ideally suited for randomized sampling!



A very cheap but sometimes unreliable randomized algorithm:
Objective: Given A, find X and J; such that A ~ A(:, J1)X:

Algorithm:

1. Find a matrix F such that A ~ EF for some matrix E.

(a) Form F by drawing ¢ rows of A “at random.”
2. Find via RRQR a vector J; and a matrix X such that F = F(: , J;)X.

3. Do nothing. Your J; and X will automatically work for A.

Procedures of this type can work well for specific classes of matrices.

However, for a general matrix A, you cannot be assured of good performance.

The number of rows needed to attain precision £ can vastly exceed the e-rank of A.



A reliable randomized algorithm:
Objective: Given A, find X and J; such that A ~ A(:, J1)X:

Algorithm:

1. Find a matrix F such that A ~ EF for some matrix E.
(a) Draw a Gaussian matrix € of size £ x m. (Think ¢ = k + 10 or ¢ = 2k.)
(b) Form a sample matrix F = QA.

2. Find via RRQR a vector J; and a matrix X such that F = F(: , J;)X.
3. Do nothing. Your J; and X will automatically work for A.

Cost: ¢/ matvecs. Dense operations on matrices with ¢ columns or rows.

Some comments on errors (details later):
e Tight theory exists (see survey paper in June 2011 issue of STAM Review).
e If the singular values of A decay rapidly, the errors are close to minimal.

e Cheap error estimators can be implemented for the “given precision” case.



A reliable and highly accurate randomized algorithm:
Objective: Given A, find X and J; such that A ~ A(:, J1)X:

Algorithm:

1. Find a matrix F such that A ~ EF for some matrix E.
(a) Draw a Gaussian matrix 2 of size £ x m. (Think ¢ =k + 10 or ¢ = 2k.)
(b) Form a sample matrix F = QA(A*A)? where ¢ is a small integer.

Note: Rounding errors can derail the procedure. Remedies exist.
2. Find via RRQR a vector J; and a matrix X such that F = F(: , J;)X.
3. Do nothing. Your J; and X will automatically work for A.

Cost: (2q + 1)¢ matrix-vector multiplications. Dense operations on matrices with

¢ columns or rows.

Errors: Tight theory exists. The errors can be made arbitrarily close to optimal.

Error estimators can be deployed.



A reliable and fast randomized algorithm:
Objective: Given A, find X and J; such that A ~ A(:, J1)X:

Algorithm:

1. Find a matrix F such that A ~ EF for some matrix E.
(a) Draw an “SRFT” matrix Q of size ¢ x m. (Think ¢ = 2k.)
(b) Form a sample matrix F = QA.

2. Find via RRQR a vector J; and a matrix X such that F = F(: , J;)X.

3. Do nothing. Your J; and X will automatically work for A.
Cost: O(mnlog(?))!

Errors: Errors are “typically” similar to the Gaussian case but can in principle

be much worse. Adaptive error estimation is a little dicier.



Question: What is the “SRFT” matrix on the previous slide?

SRFET stands for subsampled random Fourier Transform:

Q = S F D
X m IXm mxm mxm
where,
e D is a diagonal matrix whose entries are i.i.d. random variables drawn from a

uniform distribution on the unit circle in C.

1 i
e F is the discrete Fourier transform, F;; = — e~ 2miG—D(k=1)/m

Jm

e S is a matrix whose entries are all zeros except for a single, randomly placed 1
in each row. (In other words, the action of S is to draw ¢ rows at random
from DF.)

References: Ailon and Chazelle (2006); Liberty, Rokhlin, Tygert, and Woolfe (2006).



The algorithms presented are supported by rigorous theory. For instance:

Theorem: [Halko, Martinsson, Tropp 2009] Fix a real mxn matriz A with singular
values o1,09,03,.... Choose integers k > 1 and p > 2, and draw o (kK + p) X m

standard Gaussian random matriz . Construct the sample matric F = QA. Then

) 1/2 min(m,n) 1/2

2
Z g

k
E||A — AFTF|op < (1 Lk
j=k+1

p—1

Moreover,

min(m,n)
k evk+
El|A — AFTF| < (14| —— | op + EE2 (5 2
p—1 P j=k+1

For a proof, see

1/2

N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions.” SIAM Review, 53(2),
pp. 217-288, 2011.




Theorem: [Halko, Martinsson, Tropp 2009/ Fizx a real mxn matriz A with singular
values 01,09,03,.... Choose integers k > 1 and p > 4, and draw an (k4 p) x m

standard Gaussian random matriz . Construct the sample matric F = QA. Then
for all u,t > 1,

|A—AFTF|| <

with failure probability at most 2t P + e~ U /2,

3k evk+p 5\ 1/2 evk+p
I U _(24 . L EVETD
< + 1 p+1>0k+1+t b1 j>k09> +u P a

k415

The theorem can be simplified by by choosing ¢t and u appropriately. For instance,

|A — AFTF|| < {1 +9vk+p- \/min{m,n}} Of+1

with failure probability at most 3 - p™P.




Note: There are two sources of error:

(1) Error in randomized sampling:

||A— EF|| ~ \/k(m—k)gkﬂ

(2) Error resulting from Nystrém approzimation:

|A = A(:, J)X|| < /1 +4k(n — k) ||A — EF||.

Combined: ||A — A(:, J)X|| ~ kv/mn oga1.

Note: The error estimates above are typically pessimistic and should not be used
to guide practical computations. The recommended approach is to construct J;
and X via randomized sampling, and then estimate ||[A — A(:, J1)X|| via another
randomized procedure. If the error is too large, then simply add more samples and

compute a new set of prospective spanning columns to C. Repeat as necessary.

Note: The extra error from “Nystrom approximation” can be avoided if you do

not insist on using columns of A as the basis.



An algorithm for computing the SVD of a matrix (no Nystrom):
1. Draw an ¢ X m Gaussian random matrix €2.

2. Form an ¢ x m sample matrix F = QA.

3. Form a QR factorization F* = QR.
(In other words, the columns of Q form an ON basis for the rows of F).

4. Form the ¢ x m matrix B = Q*A (so that A ~ QQ*A = QB).
5. Form the SVD B = UXV*.
6. Form U = QU.

The end result are factors U, X, V such that

min(m,n)
ek +
)mmVpp -

1/2

k
E||A — UEV*|| < <1+ L j
p—1

j=k+1

Possible improvements: Use powers of A, use an SRFT instead of a Gaussian, etc.



Variation of the algorithm when A is symmetric positive definite (spd):

Given an orthonormal matrix Q whose columns form an approximate basis for the

range of A, a very useful approximation is:

A~ (AQ) (Q"AQ) ' (AQ)" = [(AQ) (@*AQ)'*| [(AQ) (@*AQ)'*| = FF",

Algorithm for computing the approximate Cholesky factor F:
1. Draw a random matrix € and form Y = AQQ.
2. Orthonormalize the columns of Y to form Q.
3. Form the matrices By = AQ and By = Q*B;.
4. Perform a Cholesky factorization B, = C*C.
5

. Form F = B;C ™! using a triangular solve.

An optional final step is to compute the SVD F = UXV*. Then A ~ U(X?)U*.



Application to structured matrix computations
So far, we have discussed the situation where a matrix A has low rank.

Next, we will describe how randomized sampling can be used to approximate a

matrix A whose off-diagonal blocks have low rank.

In what follows, we make several assumptions on A:
e A and A* can rapidly be applied to vectors.
e The cost of evaluating an individual entry of A is small.

e A has off-diagonal blocks of low (numerical) rank.

(The precise sense will be specified in the next several slides.)

Motivating example: A approximates a boundary integral operator.



Block-separable matrices

Consider a matrix A consisting of p X p blocks of size n x n:

A= : (Shown for p = 4.)

Core assumption: Each off-diagonal block A;; admits the factorization

~

Aij = Uz Aij V;k

nxn nxk kxk kxn

where the rank k is significantly smaller than the block size n. (Say k ~ n/2.)

The critical part of the assumption is that all off-diagonal blocks in the ¢’th row
use the same basis matrices U; for their column spaces (and analogously all blocks

in the j’th column use the same basis matrices V; for their row spaces).



Di; UiApp Vi UiAVi Ui AV
Uy Ay Vi D2o Us Az Vi U Aoy Vi
We get A = . ! . ’ . !
Us A3 V] U3z A3 V;5 DEE! Us Az, V)
| UsAn Vi UgApVs UlAp V3 Dy
Then A admits the factorization:
[ U, [ 0 A, A Ay || Vi D,
A U, Ay 0 Ay Aoy V3 D,
Us As; Az, 0  Asy V3 Ds
| Us | | A Az Az 0 || D,
U _i _y D
or
A — U A V* + D,
pn X pn pnXpk pkxpk pk Xpn pnXxXpn

R

How to perform a fast matrix-vector product is obvious. We can also invert A ...




Lemma: |Variation of Woodbury| If an N x N matrix A admits the factorization

~

A = U A V* — D,
pnXxXpn pnXpk pkxpk pk Xpn pn X pn

R

then
Al — E (A+ D)1 F* + G,
pnXpk pkXxXpk pk Xpn pnxXpn

-

where (provided all intermediate matrices are invertible)

D=(v'D'U)"', E=D'UD, F=(DV'D')* G=D'-D'UDV*D .

Note: All matrices set in blue are block diagonal.



What s the role of the basis matrices U, and V¢

To answer this question, we introduce some notation.
Let {I.}2_, and {J.}2_, be partitions of the index vector

1,2,3, ..., Nl =[I1, b, Iy, I] = [J1, J2, J3, Ju]

so that in the factorization

we have

and

(We typically have I, = J;.)



What s the role of the basis matrices U, and V¢

D U ALV; UA;3VE UALV]
Us Ay Vj Doo Uy A Vi Uz Ay Vi
UsAs Vi U3 A3 V3 D33 Us A3y Vi

| UsA; Vi UgApVi UsAg Vi Dy

Recall our toy example: A =

We see that the columns of V; must span the row space of the matrix A(I7, Ji)
where I; and J; are the index vectors for the first block and I{ = I'\I;.

The matriz A



What s the role of the basis matrices U, and V¢

D U AoV; UA3VE U ALV
Uy Ay Vi Doo Uy A Vi Uz Ay Vi
UsAs Vi U3 As V3 D33 Us A3, Vi

| UsA; Vi UgApVi UsAg Vi Dy

Recall our toy example: A =

We see that the columns of Vo must span the row space of the matrix A(I5, J2)
where Iy and Jo are the index vectors for the first block and IS = I\ I5.

B

The matriz A



Recall: The block separable structure relies on factorizations such as (for k < n)

~

AO‘,T — UO‘ AO‘,T V:

T

nxXn nxk kxk kxn

For the representation to be numerically stable, it is critical that the basis

matrices U, and V., be well-conditioned.

Standard practice is to have U, and V; be orthonormal (i.e. UTU, = VIV, =1I;).
This maximizes stability.

We have decided to instead use interpolatory decompositions in which:
1. U; and V. each contain the £ X k identity matrix as a submatrix.
2. U, and V, are “reasonably” well-conditioned.

~

3. A, r is a submatrix of A for all o, 7.

Our choice leads to some loss of accuracy, but enables the construction of

(relatively) simple compression algorithms.



Constructing {U:},; and {V,}, via randomized sampling

0 Ap Az Ay
Axi 0 Ay Ay
As1 Az 0 Agy
Ay Ap Ay 0

Set B=A-—-D =

Then the rows of VI must span the row space of B(: , J;).

We use randomized sampling to find a spanning set for B(: , J;):
1. Draw an ¢ x N Gaussian random matrix Q. (Think ¢ = k£ + 10.)
2. Form a sample matrix S = QB = QA — QD.
3. For each 7, form V7 by performing RRQR on the columns of S(: , J;):

S(:, J,) = S(:, J-)V*.
If {U,}, and {I.}, are constructed analogously, then

A(I,,J;) =U,A(Iy, J,)V:  when o # 7.
N——

:AO',T



We have now obtained a factorization
[ U 11 o A, Ajs Ay 11 Vi | [ D,
U A 0 A; A V3 D
A _ 2 ~21 i 23 ~24 2 —I— 2
U3 A31 A32 0 A34 V; D3
i Us | | An A A 0 || Vi | D,
;TJ ;T& :\\7* ;T) |
or
= U A V* + D,
pk Xpn pn X pn

A
pnXxXpn pnXpk pkxpk

Important: Since we use interpolative factorizations, A, ;

so A is a submatrix of A — D.

We can recurse!



Recursion results in a telescoping factorization of A:
A=U® (U(Q) (U(l) B vy* 4 B(U)(\/(?))* 4 3(2))(V(3))* +D®),
with the block structure:

u® u® y® o V(l) B(1) (V(2) B(2 V(3)) D®)

Y e e

All matrices are now block diagonal except B(O), which 1s small.




Using a telescoping factorization of A
A=U® (U(Q) (U(l) B vy* 4 B(U)(\/(?))* 4 3(2))(V(3))* +D®),
we have a telescoping inversion formula

A~ = E@(EREODYFY) BV (F@)r 4+ D) (V@) B

Block structure of factorization:
u® u® y® g V(l) BV (V(2) B(? V(3)) D)

T e

All matrices are now block diagonal except If)(o), which 1s small.




Formal definition of a Hierarchically Block Separable (HBS) matrix
Suppose T is a binary tree on the index vector I = [1, 2, 3, ..., NJ.

For a node 7 in the tree, let I denote the corresponding index vector.

Level 0 ..., 400]

Level 1 ..., 200], Iz = [201, 202, ..., 4(
Level 2 ..., 100], Is = [101, 102, ..., 2
Level 3 .., 50], Iy = [51, 52, ..., 100],

Numbering of nodes in a fully populated binary tree with L = 3 levels.
The root is the original index vector I = I, = [1, 2, ..., 400].



Formal definition of a Hierarchically Block Separable (HBS) matrix
Suppose 7T is a binary tree.
For a node 7 in the tree, let I denote the corresponding index vector.

For leaves o and 7, set A, = A(l,,I;) and suppose that all off-diagonal blocks
satisty

~

A, = U, A, V; oF£T

nxXn nxk kxk kxn

For non-leaves o and 7, let {01,092} denote the children of o, and let {7, >}
denote the children of 7. Set

~ ~

Aal yT1 Aal s T2
Aa T —

9 ~ ~

AU2a7-1 A0'2>7'2

Then suppose that the off-diagonal blocks satisfy

~

A, = U, A, - \jl oFT
2k x 2k 2k x k kxk kx2k



Name: | Size: Function:

For each leaf D. nxmn The diagonal block A(I,,I;).

node T: U- n Xk Basis for the columns in the blocks in row 7.
V., n x k Basis for the rows in the blocks in column 7.

For each parent | B 2k x 2k | Interactions between the children of 7.

node 7: U, 2k x k| Basis for the columns in the (reduced) blocks in row 7.
Vv 2k x k| Basis for the rows in the (reduced) blocks in column 7.

2

An HBS matrix A with a tree T is fully specified if the factors listed above are provided.




Generate an N x ¢ Gaussian random matrix Q.  (think ¢ = £ + 10)
Evaluate S = A Q using the fast matrix-vector multiplier.
loop over levels, finer to coarser, f =L, L —1,...,2,1

loop over all nodes 7 on level /¢

if 7 is a leaf node then

Loec = I~
Qioc = Q(I,:)
Sioce = S(Ur,:) — A(l+, 1) Qioc
else
Let v1 and v2 be the two children of 7.
Lo = [jul, jl/g]
Qo = b
Q,,
Sloc _ SV1 - A(j:’/l ) j}/z) QV2
SV2 - A(IV27IV1) QVl
end if
[U., J,] = interpolate(S},.) (i.e. perform RRQR and form R;;'Ri2)
Q, = U7 Qo
S: = Siec(Jr,:)
I = Loo(J7)
end loop

end loop
For all leaf nodes 7, set D, = A(I,, I,).
For all sibling pairs {v1, v2} set By, v, = A(f,,l, fm).



The asymptotic cost of applying the algorithm to an N x N matrix A is
Tiotal ~ Tonats X 2 (k +10) + Trana X N (k4 10) + Tontry X 2Nk + Thop X ¢ N k2,
where k is an upper bound for the rank of an off-diagonal block of A, and where

Tiota1 1s the total execution time

Tt 1s the cost of a matrix-vector multiply involving A
Trana 1s the cost of “drawing” a Gaussian random number
Tentry 1s the cost of evaluating an entry of A

Thop 1s the cost of a flop

Important: The matrix vector multiplies can all be executed in parallel.
Specifically, you only need to compute the two matrix-matrix products
A Q A* Q

and
N x N N x (k+10) N x N N x (k+10)



Numerical example

Let A be a discrete approximations of the boundary integral operator

(3) [Tul(x) = au(x) + /F K(z,y)u(y) ds(y), zel,

where I' is the contour shown below, and o and K are chosen as either one of the
following two options:

4) a=0 and K(z,y)=log|z — vy (the “single layer” kernel)
5) a=1/2 and K(z,y) = (n(y) - (x —y))/|x —y|> (the “double layer” kernel)

For y € I', n(y) denotes the unit normal of I' at y. The single layer operator was

discretized via the trapezoidal rule with a Kapur-Rokhlin end-point modification of the
6* order for handling the singularity in the kernel k(x,y) as y approaches x, resulting in a

symmetric coefficient matrix.

The contour I



Numerical example: implementation details
A is a discrete approximation to a boundary integral operator.

The sample matrices S = AQ and S’ = A*Q were evaluated via the Fast Multipole
Method. Observe that two calls to the FMM is sufficient.

The randomized hierarchical procedure was used to compute an approximant

A@PPTOX) iy hierarchically block separable format.

Using a power iteration the following error metric was computed:

| — Al
L

€1

Hardware: A single processor 3.2GHz Pentium IV with 2GB of RAM.



Results: The double layer potential (a well-conditioned matrix)

e=10"°, ¢ =50
N | Teompression | Tiwersion | Tmatvee | [[A™PP]| | |G| 1 2
400 0.047 0.031 0.000 1.04 3.6 | 2.6e-6 | 5.5e-6
800 0.094 0.031 0.016 1.04 3.6 | 3.1e-6 | 6.5e-6
1600 0.219 0.094 0.000 1.04 3.0 | 2.9e-6 | 6.3e-6
3200 0.406 0.140 0.016 1.04 3.5 | 2.6e-6 | 5.4e-6
6400 0.844 0.297 0.031 1.04 3.5 | 3.4e-6 | 7.6e-6
12800 1.688 0.578 0.062 1.04 3.6 | 3.6e-6 | 7.8¢e-6
25600 3.344 1.156 0.141 1.04 3.3 | 3.4e-6 | 7.3e-6

e=10"19, ¢ =100
N | Teompression | Tinversion | Twmatvee | [|[ACPP)] | |G| el €2
400 0.093 0.032 0.000 1.04 3.6 | 2.1e-11 | 4.5e-11
800 0.156 0.079 0.000 1.04 3.6 | 2.0e-11 | 4.4e-11
1600 0.297 0.109 0.016 1.04 3.6 | 1.5e-11 | 3.1e-11
3200 0.579 0.203 0.015 1.04 3.4 | 1.9e-11 | 4.0e-11
6400 1.094 0.344 0.047 1.04 3.6 | 2.5e-11 | 5.2e-11
12800 2.141 0.687 0.078 1.04 3.6 | 2.0e-11 | 4.2e-11
25600 4.093 1.266 0.141 1.04 3.6 | 3.4e-11 | 7.1e-11

Times in seconds. Recall e1 = IA-ATPPI| es = ||l — AG||, where G ~ A™!,

1A




Observation: The FMM itself is much slower than the HBS algebral!

N =800 | N=1600 | N=3200| N=6400 | N =12800 | N = 25600
Nyee = 1 1.328 1.891 2.875 4.531 7.343 13.266
Nyee = 50 1.500 2.266 3.578 5.969 10.531 19.375
Nyee = 100 1.656 2.563 4.110 7.062 12.844 23.891

Time i1n seconds required by our implementation of the FMM to apply a

matrixz of size N X N to Nye. vectors simultaneously. The FMM uses

multipole expansions of length 40, leading to about 15 accurate digits.

Observation:

Being able to compute the £ matvecs in parallel is highly advantageous.




Numerical example: Inversion of HBS-matrix

We performed an HBS inversion to compute

G ~ ( A(approx)) !

and evaluated the error metric

€9 — Hl —AGH



Results: The double layer potential (a well-conditioned matrix)

e=10"°, ¢ =50
N | Teompression | Tiwersion | Tmatvee | [[A™PP]| | |G| 1 2
400 0.047 0.031 0.000 1.04 3.6 | 2.6e-6 | 5.5e-6
800 0.094 0.031 0.016 1.04 3.6 | 3.1e-6 | 6.5e-6
1600 0.219 0.094 0.000 1.04 3.0 | 2.9e-6 | 6.3e-6
3200 0.406 0.140 0.016 1.04 3.5 | 2.6e-6 | 5.4e-6
6400 0.844 0.297 0.031 1.04 3.5 | 3.4e-6 | 7.6e-6
12800 1.688 0.578 0.062 1.04 3.6 | 3.6e-6 | 7.8¢e-6
25600 3.344 1.156 0.141 1.04 3.3 | 3.4e-6 | 7.3e-6

e=10"19, ¢ =100
N | Teompression | Tinversion | Twmatvee | [|[ACPP)] | |G| el €2
400 0.093 0.032 0.000 1.04 3.6 | 2.1e-11 | 4.5e-11
800 0.156 0.079 0.000 1.04 3.6 | 2.0e-11 | 4.4e-11
1600 0.297 0.109 0.016 1.04 3.6 | 1.5e-11 | 3.1e-11
3200 0.579 0.203 0.015 1.04 3.4 | 1.9e-11 | 4.0e-11
6400 1.094 0.344 0.047 1.04 3.6 | 2.5e-11 | 5.2e-11
12800 2.141 0.687 0.078 1.04 3.6 | 2.0e-11 | 4.2e-11
25600 4.093 1.266 0.141 1.04 3.6 | 3.4e-11 | 7.1e-11

Times in seconds. Recall e1 = IA-ATPPI| es = ||l — AG||, where G ~ A™!,

1A




Results: The single layer potential (an ill-conditioned matrix)

e=10"°, ¢ =50
N | Teompression | Tinversion | Tmatvec | ||[APPP)(| | |G| e1 €2
400 0.047 0.031 | 0.000 1.23 | 6.4e3 | 5.1e-6 | 2.9e-3
800 0.078 0.063 |  0.000 0.77 | 1.4ed4 | 5.2e-6 | 2.4e-3
1600 0.140 0.141 | 0.016 0.57 | 1.6e5 | 1.1e-5 | 2.0e-2
3200 0.297 0.297 | 0.031 0.57 | 2.3e5 | 5.8e-6 | 1.2e-2
6400 0.625 0.625 | 0.062 0.57 | 1.1e6 | 2.9e-6 | 1.4e-2
12800 1.281 1.328 | 0.141 0.57 | 4.2¢6 | 3.5e-6 | 8.0e-2
25600 2.625 2.875 | 0.265 0.57 | 5.6e6 | 6.5e-6 | 1.2¢-1
e=10"10 ¢ =100
N | Teompression | Tinversion | Tmatvee | ||[AEPP)(| | [|G]| e1 €2
400 0.047 0.047 |  0.000 1.24 | 6.4e3 | 3.3e-11 | 1.5e-8
800 0.109 0.094 | 0.000 0.75 | 1.4e4 | 4.3e-11 | 2.0e-8
1600 0.203 0.203 | 0.032 0.57 | 1.6e5 | 4.3e-11 | 1.2e-7
3200 0.422 0.406 | 0.031 0.57 | 2.3e5 | 4.3e-11 | 1.2e-5
6400 0.843 0.844 | 0.078 0.57 | 1.1e6 | 4.4e-11 | 4.6e-5
12800 1.687 1.703 | 0.141 0.57 | 4.2¢6 | 3.3e-11 | 2.2e-4
25600 3.407 3.547 |  0.266 0.57 | 5.6e6 | 2.6e-11 | 2.0e-5
_ ||[A—Alapprox)|

Times in seconds. Recall e; = and es = ||| — AG||, where G ~ A~ 1.

1A



Key points:

1. Finding spanning rows and columns of a large matrix can be very useful.
e Faster algorithms.
e Data interpretation.

e Factorizations that preserve structure (e.g. sparsity).

2. There are many different factorizations to choose from.

Take care to not introduce instabilities unnecessarily.

3. Finding “tight” factorizations is a delicate but well-studied subject.

More relaxed formulations admit very easy algorithms and are often adequate.

4. Randomized sampling + row/column selection is a powerful combination.

e Approximation of Hierarchically Block Separable matrices.
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