Randomized methods for finding interpolative decompositions of
very large matrices

Gunnar Martinsson
The University of Colorado at Boulder

Students: Collaborators:
Adrianna Gillman (now at Dartmouth) Edo Liberty (Yahoo research)
Nathan Halko Vladimir Rokhlin (Yale)
Sijia Hao Yoel Shkolnisky (Tel Aviv University)
Patrick Young (now at GeoEye, Inc.) Joel Tropp (Caltech)

Mark Tygert (Courant)
Franco Woolfe (Goldman Sachs)

Outline:
1. Brief review of the “Nystrom method” for approximation of low-rank matrices.
2. Some comments on rank-revealing QR factorizations.
3. Constructing Nystrom factorizations via randomized sampling.

4. Approximating structured matrices (H-matrices, HSS-matrices, etc).

Notation:
A is a matrix of size m X n. Think of m and n as large.

k is the (numerical) rank of A. Think k < min(m,n).

Nystrom approximation: A basic identity

Let A be an m X n matrix of rank k. Let A{; denote the leading k x k block:

A1 Ap
Ax; Ay

A =

Lemma: If Ay is non-singular, then Agy = A21A1_11A12.

As a consequence, we obtain a factorization

A = C X
m X n mxk kxn
A1y .
where C = consists of the first £ columns of A, and
Ay

X=1[A Ap]

Nystrom approximation: Cheap SVD

A1 Ap . . .
Recall: A = has rank k£ and the k x k matrix Aq; is non-singular.
Azi Ay
All 1
Set C = and X = [I A{; A12]. Then A = CX.
Aoy
The SVD of A can now be computed via four operations:
=QR —0xv: =U
= ~~ 7
A — C X = Q RX =QUXV* = U 2 Vv*
m X n mxk kxn mxk kxk kxn

Note: Each step involves matrices with at most k& rows/columns.
The total cost is O(k*(m + n)).

Note: Forming RX is cheap since RX = R[l A;A;p] =[R Qj'Ais].

Nystrom approximation: Complications ...

A1 Ap . . .
Recall: A = has rank k£ and the k x k matrix Aq; is non-singular.

Ar; Ao

Complication 1: Aj; could be ill-conditioned (or even singular). Then computing

A ! is problematic, and computing Aj; A1z or Ay A}l could be problematic.
This is in principle easy to fix via pivoting.
Remedy: Find index vectors I; C ZF and J; C Z* such that

det(A(I1, J1))

is maximized. Set I = [I1, Zy,\I1]| and J = |J1, Z,\J1], partition

A A
AL J) = 11 A2 |
Ax; A

and proceed as before. Then all elements of the matrices A1_11A12 or A21A1_11 are

bounded in modulus by one. (A direct consequence of Cramer’s rule.)

Caveat: Solving the maximization problem is combinatorially hard.

Nystrom approximation: Complications ...

Air A . . .
Recall: A(I,J) = has rank k£ and the k& x k matrix Aj; is non-singular.

Az Ay
Complication 2: The rank of A is typically not precisely k.

Example: Suppose € is a small number and consider the 2k x 2k matrix

A_ I, O
0 Elk
With C = , the Nystrom approximant is Aystrom) — ccta = . Good.
0 0 0
. 0) . . . 0 0
With C = , the Nystrom approximant is Anystrom) — cCTA = . Bad.
el 0 el

Nystrom approximation: Complications ...

Ay A
Recall: A(1,J) = T has rank k and the k x k matrix A1; is non-singular.

Az; Ago
Complication 2: The rank of A is typically not precisely k.

Remedy: Find index vectors Iy C ZF and J; C ZF such that
det(A(Il, Jl))

1s maximized.

Nystrom approximation: Finding spanning rows/columns can be

intrinsically valuable

Al A . : .
Recall: A(I,J) = has rank k£ and the k& x k matrix Aj; is non-singular.

Ar; Ax

Data interpretation: Collect statistical data in a large matrix. By finding a set
of spanning columns/rows, you can identify some variables that “explain” the
data. (Say a small collection of genes among a set of recorded genomes, or a small

number of stocks in a portfolio.)

Preserve data structure: For example, if A is sparse, then the large factors in a

Nystrom decomposition are also sparse.

Nystrom approximation: Different factorizations

A;p A

Recall: A(1,J) = has rank k and the k£ x k matrix Aj; is non-singular.
Az A
A
Set C = H and R = [A;; Aj2]. Then (with factors in red submatrices of A):
Az
o A(I,J)=CX with X =1 A}A]

o A(I,J)=YR with Y = 1
Az Aq

e A(I,J)=YA;; X with X=[I A{Ajs] and Y = 1
A2 Ay
e A(I,J) = CUR with U= A}

Note: All factorizations are stable if I and J are chosen properly; except CUR.

Nystrom approximation: Summary

Let A be an m X n matrix, let £ be a specified rank, let J; C ZZ?L be an index

vector, let C denote the corresponding collection of columns
C=A(:;J;)
and define the corresponding Nystrom approrimant via

A(nystrom) _ CCTA

Question: What is the minimal error ||A — Astrom)| |9

Question: How do you find a “good” index vector J;7

Recall that the singular values {aj}r.nin(m’”)

=1 of A satisfy

0j+1 = min{||A — B|| : B has rank j}.
Since the Nystrom minimization problem is further constrained, we must have

||A . A(nystrom)H > 0jit.

The standard framework for analyzing questions of this type is in terms of
rank-revealing QR factorizations (RRQR).
Ry ‘ Ri2

A(;,J)=QR = [Q: | Q2]
0 \ R

Desirable properties:

e The singular values of Ry should approximate the largest singular values of A.
Uj(Rll) ~ O'j(A) for 1 S] < k.

e The “mass” in Rgy is the Nystrom error and should be as small as possible.
IR22|| = o1 (A).

e The columns in Q;Ry; = A(:, J(1 : k)) should form a good basis for ran(A).
R1_11R12 should have elements of moderate size.
(Note that A7'A1s = R;'Ri2.)

The standard framework for analyzing questions of this type is in terms of
rank-revealing QR factorizations (RRQR).
Ry ‘ Ri2

A(:,J) = QR =[Q: | Q]
0 | R

Desirable properties:
e The singular values of Ry should approximate the largest singular values of A.
Uj(Rll) ~ O'j(A) for 1 S] < k.
0i(R11) < 0;(A) holds automatically for any j and J.

e The “mass” in Rgg should be as small as possible.

[IR22|| = o1 (A).
0j(Ra2) > 04 (A) holds automatically for any j and J.

e The columns in Q;Ry; = A(:, J(1 : k)) should form a good basis for ran(A).
R1_11R12 should have elements of moderate size.
(Note that A7'A1s = R;'Ri2.)

The standard framework for analyzing questions of this type is in terms of
rank-revealing QR factorizations (RRQR).
Ry ‘ Ri2

A(:,J) = QR =[Q: | Q]
0 | R

Desirable properties:

e The singular values of Ry; should approximate the largest singular values of A.
0j(R11) = 0j(A) for 1 <j <k.
0j(R11) < 0(A) holds automatically for any j and J.
We seek J such that oj(Ry1) > ma]’(A) for some modest p(k,n).

e The “mass” in Rgg should be as small as possible.
[IR22|| & 041 (A).
0j(Ra2) > 04 (A) holds automatically for any j and J.
We seek J such that ||Ras|| < p(k,n) ori1(A) for some modest p(k,n).

e The columns in Q;Ry; = A(:, J(1 : k)) should form a good basis for ran(A).
R1_11R12 should have elements of moderate size.
(Note that A7'A1s = R;'Ri2.)

A(:;J)=QR=1[Q; | Q2]

0 | R
The following bounds can be achieved:
1
o;(A) <o;(R11) < o;(A
\/1—l—k(n—k) J()— J(11)— J()

|R22|| <v/1+ k(n — k)orp1(A)
IR R2](4,)| <1.

Column-pivoted Gram-Schmidt factorization does not necessarily get close to the

above. (In practice, it usually does, however.) Famous counter-example by Kahan.

A more sophisticated algorithm by Eisenstat and Gu guarantees bounds close to
the achievable (optimal?) bounds reported above. It can require O(mn?) run

time, but “typically” executes faster.

Question: In practical applications, do you really need an RRQR?

The set-up for RRQR is that we are given a rank k, and seek something close to

the very best rank-k Nystrom approximant.

Relaxed formulation suitable for many applications:

Given a matrix A, and a tolerance ¢, find an index vector J; such that
I|A—A(:,J1)X]| <¢

where X is some matrix whose entries are “small,” and the length of J; is “compa-
rable” to the e-rank of A.

Observations:

e Overshooting the rank a bit is typically fine.
(With £ denoting the e-rank, #J; = k + 10 or even #J; = 2k is often OK.)

e If you overshoot in the first run, postprocessing (such as computing an SVD)

will reveal the true rank up to precision ¢.

Question: In practical applications, do you really need an RRQR?

The set-up for RRQR is that we are given a rank £, and seek something close to

the very best rank-k Nystrom approximant.

Relaxed formulation suitable for many applications:

Given a matrix A, and a tolerance ¢, find an index vector J; such that
IA—=A(:, J1)X|| <e

where X is some matrix whose entries are “small,” and the length of J; is “compa-
rable” to the e-rank of A.

Solution for small and moderate size problems:
Column pivoted Gram-Schmidt works well most of the time.

(Enforcing orthogonality religiously is crucial, however.)

Question: In practical applications, do you really need an RRQR?

The set-up for RRQR is that we are given a rank £k, and seek something close to

the very best rank-k Nystrom approximant.

Relaxed formulation suitable for many applications:

Given a matrix A, and a tolerance ¢, find an index vector J; such that
I|A—A(:,J1)X]| <e

where X is some matrix whose entries are “small,” and the length of J; is “compa-
rable” to the e-rank of A.

Solution for large size problems:

1. Find (by any means) matrices E and F such that

IA—EF|| < ! -
V1+4k(n —k)

2. Find a vector J; and a matrix X such that

F=F(:,J)X

3. Do nothing! Your J; and X will automatically work for A.

Lemma: Suppose that

A =EF
and that
(1) F=F(, J1)X
Then
A=A(:J)X.

Proof: Multiply (1) by E from the left:

Lemma: Suppose that

(2) F=F(,J)X.
and that
|A —EF|| < ———=¢.
1+ [|X]|
Then

1A — A(, J)X]|| < e.

Proof: Set

Then

1A = AC, JO)X|| < [[A =B, J1)X || +[[B(:, J1)X = A(:, J1)X]|
N——

=B

1 1

< [IA =B+ B J1) = AG, I X < =g + 7 el Xl = €
| 1+ 1B(:, J1) X T T

Note: If X is constructed via RRQR then [|X|| < /1 + 4k(n — k).

Note: The loss of accuracy is clearly visible in most applications.

Recall: An algorithm for finding X and J; such that A ~ A(:, J;)X:
1. Find (by any means) matrices E and F such that A ~ EF.
2. Find a vector J; and a matrix X such that F = F(: , J;)X.

3. Do nothing! Your J; and X will automatically work for A.

Observation: The matrix E is not used. It only needs to exist.

All we need is a collection of vectors that span the row space of A.

This problem is ideally suited for randomized sampling!

A very cheap but sometimes unreliable randomized algorithm:
Objective: Given A, find X and J; such that A ~ A(:, J1)X:

Algorithm:

1. Find a matrix F such that A ~ EF for some matrix E.

(a) Form F by drawing ¢ rows of A “at random.”
2. Find via RRQR a vector J; and a matrix X such that F = F(: , J;)X.

3. Do nothing. Your J; and X will automatically work for A.

Procedures of this type can work well for specific classes of matrices.

However, for a general matrix A, you cannot be assured of good performance.

The number of rows needed to attain precision £ can vastly exceed the e-rank of A.

A reliable randomized algorithm:
Objective: Given A, find X and J; such that A ~ A(:, J1)X:

Algorithm:

1. Find a matrix F such that A ~ EF for some matrix E.
(a) Draw a Gaussian matrix € of size £ x m. (Think ¢ = k + 10 or ¢ = 2k.)
(b) Form a sample matrix F = QA.

2. Find via RRQR a vector J; and a matrix X such that F = F(: , J;)X.
3. Do nothing. Your J; and X will automatically work for A.

Cost: ¢/ matvecs. Dense operations on matrices with ¢ columns or rows.

Some comments on errors (details later):
e Tight theory exists (see survey paper in June 2011 issue of STAM Review).
e If the singular values of A decay rapidly, the errors are close to minimal.

e Cheap error estimators can be implemented for the “given precision” case.

A reliable and highly accurate randomized algorithm:
Objective: Given A, find X and J; such that A ~ A(:, J1)X:

Algorithm:

1. Find a matrix F such that A ~ EF for some matrix E.
(a) Draw a Gaussian matrix 2 of size £ x m. (Think ¢ =k + 10 or ¢ = 2k.)
(b) Form a sample matrix F = QA(A*A)? where ¢ is a small integer.

Note: Rounding errors can derail the procedure. Remedies exist.
2. Find via RRQR a vector J; and a matrix X such that F = F(: , J;)X.
3. Do nothing. Your J; and X will automatically work for A.

Cost: (2q + 1)¢ matrix-vector multiplications. Dense operations on matrices with

¢ columns or rows.

Errors: Tight theory exists. The errors can be made arbitrarily close to optimal.

Error estimators can be deployed.

A reliable and fast randomized algorithm:
Objective: Given A, find X and J; such that A ~ A(:, J1)X:

Algorithm:

1. Find a matrix F such that A ~ EF for some matrix E.
(a) Draw an “SRFT” matrix Q of size ¢ x m. (Think ¢ = 2k.)
(b) Form a sample matrix F = QA.

2. Find via RRQR a vector J; and a matrix X such that F = F(: , J;)X.

3. Do nothing. Your J; and X will automatically work for A.
Cost: O(mnlog(?))!

Errors: Errors are “typically” similar to the Gaussian case but can in principle

be much worse. Adaptive error estimation is a little dicier.

Question: What is the “SRFT” matrix on the previous slide?

SRFET stands for subsampled random Fourier Transform:

Q = S F D
X m IXm mxm mxm
where,
e D is a diagonal matrix whose entries are i.i.d. random variables drawn from a

uniform distribution on the unit circle in C.

1 i
e F is the discrete Fourier transform, F;; = — e~ 2miG—D(k=1)/m

Jm

e S is a matrix whose entries are all zeros except for a single, randomly placed 1
in each row. (In other words, the action of S is to draw ¢ rows at random
from DF.)

References: Ailon and Chazelle (2006); Liberty, Rokhlin, Tygert, and Woolfe (2006).

The algorithms presented are supported by rigorous theory. For instance:

Theorem: [Halko, Martinsson, Tropp 2009] Fix a real mxn matriz A with singular
values o1,09,03,.... Choose integers k > 1 and p > 2, and draw o (kK + p) X m

standard Gaussian random matriz . Construct the sample matric F = QA. Then

) 1/2 min(m,n) 1/2

2
Z g

k
E||A — AFTF|op < (1 Lk
j=k+1

p—1

Moreover,

min(m,n)
k evk+
El|A — AFTF| < (14| —— | op + EE2 (5 2
p—1 P j=k+1

For a proof, see

1/2

N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions.” SIAM Review, 53(2),
pp. 217-288, 2011.

Theorem: [Halko, Martinsson, Tropp 2009/ Fizx a real mxn matriz A with singular
values 01,09,03,.... Choose integers k > 1 and p > 4, and draw an (k4 p) x m

standard Gaussian random matriz . Construct the sample matric F = QA. Then
for all u,t > 1,

|A—AFTF|| <

with failure probability at most 2t P + e~ U /2,

3k evk+p 5\ 1/2 evk+p
I U _(24 . L EVETD
< + 1 p+1>0k+1+t b1 j>k09> +u P a

k415

The theorem can be simplified by by choosing ¢t and u appropriately. For instance,

|A — AFTF|| < {1 +9vk+p- \/min{m,n}} Of+1

with failure probability at most 3 - p™P.

Note: There are two sources of error:

(1) Error in randomized sampling:

||A— EF|| ~ \/k(m—k)gkﬂ

(2) Error resulting from Nystrém approzimation:

|A = A(:, J)X|| < /1 +4k(n — k) ||A — EF||.

Combined: ||A — A(:, J)X|| ~ kv/mn oga1.

Note: The error estimates above are typically pessimistic and should not be used
to guide practical computations. The recommended approach is to construct J;
and X via randomized sampling, and then estimate ||[A — A(:, J1)X|| via another
randomized procedure. If the error is too large, then simply add more samples and

compute a new set of prospective spanning columns to C. Repeat as necessary.

Note: The extra error from “Nystrom approximation” can be avoided if you do

not insist on using columns of A as the basis.

An algorithm for computing the SVD of a matrix (no Nystrom):
1. Draw an ¢ X m Gaussian random matrix €2.

2. Form an ¢ x m sample matrix F = QA.

3. Form a QR factorization F* = QR.
(In other words, the columns of Q form an ON basis for the rows of F).

4. Form the ¢ x m matrix B = Q*A (so that A ~ QQ*A = QB).
5. Form the SVD B = UXV*.
6. Form U = QU.

The end result are factors U, X, V such that

min(m,n)
ek +
)mmVpp -

1/2

k
E||A — UEV*|| < <1+ L j
p—1

j=k+1

Possible improvements: Use powers of A, use an SRFT instead of a Gaussian, etc.

Variation of the algorithm when A is symmetric positive definite (spd):

Given an orthonormal matrix Q whose columns form an approximate basis for the

range of A, a very useful approximation is:

A~ (AQ) (Q"AQ) ' (AQ)" = [(AQ) (@*AQ)'*| [(AQ) (@*AQ)'*| = FF",

Algorithm for computing the approximate Cholesky factor F:
1. Draw a random matrix € and form Y = AQQ.
2. Orthonormalize the columns of Y to form Q.
3. Form the matrices By = AQ and By = Q*B;.
4. Perform a Cholesky factorization B, = C*C.
5

. Form F = B;C ™! using a triangular solve.

An optional final step is to compute the SVD F = UXV*. Then A ~ U(X?)U*.

Application to structured matrix computations
So far, we have discussed the situation where a matrix A has low rank.

Next, we will describe how randomized sampling can be used to approximate a

matrix A whose off-diagonal blocks have low rank.

In what follows, we make several assumptions on A:
e A and A* can rapidly be applied to vectors.
e The cost of evaluating an individual entry of A is small.

e A has off-diagonal blocks of low (numerical) rank.

(The precise sense will be specified in the next several slides.)

Motivating example: A approximates a boundary integral operator.

Block-separable matrices

Consider a matrix A consisting of p X p blocks of size n x n:

A= : (Shown for p = 4.)

Core assumption: Each off-diagonal block A;; admits the factorization

~

Aij = Uz Aij V;k

nxn nxk kxk kxn

where the rank k is significantly smaller than the block size n. (Say k ~ n/2.)

The critical part of the assumption is that all off-diagonal blocks in the ¢’th row
use the same basis matrices U; for their column spaces (and analogously all blocks

in the j’th column use the same basis matrices V; for their row spaces).

Di; UiApp Vi UiAVi Ui AV
Uy Ay Vi D2o Us Az Vi U Aoy Vi
We get A = . ! . ’ . !
Us A3 V] U3z A3 V;5 DEE! Us Az, V)
| UsAn Vi UgApVs UlAp V3 Dy
Then A admits the factorization:
[U, [0 A, A Ay || Vi D,
A U, Ay 0 Ay Aoy V3 D,
Us As; Az, 0 Asy V3 Ds
| Us | | A Az Az 0 || D,
U _i _y D
or
A — U A V* + D,
pn X pn pnXpk pkxpk pk Xpn pnXxXpn

R

How to perform a fast matrix-vector product is obvious. We can also invert A ...

Lemma: |Variation of Woodbury| If an N x N matrix A admits the factorization

~

A = U A V* — D,
pnXxXpn pnXpk pkxpk pk Xpn pn X pn

R

then
Al — E (A+ D)1 F* + G,
pnXpk pkXxXpk pk Xpn pnxXpn

-

where (provided all intermediate matrices are invertible)

D=(v'D'U)"', E=D'UD, F=(DV'D')* G=D'-D'UDV*D .

Note: All matrices set in blue are block diagonal.

What s the role of the basis matrices U, and V¢

To answer this question, we introduce some notation.
Let {I.}2_, and {J.}2_, be partitions of the index vector

1,2,3, ..., Nl =[I1, b, Iy, I] = [J1, J2, J3, Ju]

so that in the factorization

we have

and

(We typically have I, = J;.)

What s the role of the basis matrices U, and V¢

D U ALV; UA;3VE UALV]
Us Ay Vj Doo Uy A Vi Uz Ay Vi
UsAs Vi U3 A3 V3 D33 Us A3y Vi

| UsA; Vi UgApVi UsAg Vi Dy

Recall our toy example: A =

We see that the columns of V; must span the row space of the matrix A(I7, Ji)
where I; and J; are the index vectors for the first block and I{ = I'\I;.

The matriz A

What s the role of the basis matrices U, and V¢

D U AoV; UA3VE U ALV
Uy Ay Vi Doo Uy A Vi Uz Ay Vi
UsAs Vi U3 As V3 D33 Us A3, Vi

| UsA; Vi UgApVi UsAg Vi Dy

Recall our toy example: A =

We see that the columns of Vo must span the row space of the matrix A(I5, J2)
where Iy and Jo are the index vectors for the first block and IS = I\ I5.

B

The matriz A

Recall: The block separable structure relies on factorizations such as (for k < n)

~

AO‘,T — UO‘ AO‘,T V:

T

nxXn nxk kxk kxn

For the representation to be numerically stable, it is critical that the basis

matrices U, and V., be well-conditioned.

Standard practice is to have U, and V; be orthonormal (i.e. UTU, = VIV, =1I;).
This maximizes stability.

We have decided to instead use interpolatory decompositions in which:
1. U; and V. each contain the £ X k identity matrix as a submatrix.
2. U, and V, are “reasonably” well-conditioned.

~

3. A, r is a submatrix of A for all o, 7.

Our choice leads to some loss of accuracy, but enables the construction of

(relatively) simple compression algorithms.

Constructing {U:},; and {V,}, via randomized sampling

0 Ap Az Ay
Axi 0 Ay Ay
As1 Az 0 Agy
Ay Ap Ay 0

Set B=A-—-D =

Then the rows of VI must span the row space of B(: , J;).

We use randomized sampling to find a spanning set for B(: , J;):
1. Draw an ¢ x N Gaussian random matrix Q. (Think ¢ = k£ + 10.)
2. Form a sample matrix S = QB = QA — QD.
3. For each 7, form V7 by performing RRQR on the columns of S(: , J;):

S(:, J,) = S(:, J-)V*.
If {U,}, and {I.}, are constructed analogously, then

A(I,,J;) =U,A(Iy, J,)V: when o # 7.
N——

:AO',T

We have now obtained a factorization
[U 11 o A, Ajs Ay 11 Vi | [D,
U A 0 A; A V3 D
A _ 2 ~21 i 23 ~24 2 —I— 2
U3 A31 A32 0 A34 V; D3
i Us | | An A A 0 || Vi | D,
;TJ ;T& :\\7* ;T) |
or
= U A V* + D,
pk Xpn pn X pn

A
pnXxXpn pnXpk pkxpk

Important: Since we use interpolative factorizations, A, ;

so A is a submatrix of A — D.

We can recurse!

Recursion results in a telescoping factorization of A:
A=U® (U(Q) (U(l) B vy* 4 B(U)(\/(?))* 4 3(2))(V(3))* +D®),
with the block structure:

u® u® y® o V(l) B(1) (V(2) B(2 V(3)) D®)

Y e e

All matrices are now block diagonal except B(O), which 1s small.

Using a telescoping factorization of A
A=U® (U(Q) (U(l) B vy* 4 B(U)(\/(?))* 4 3(2))(V(3))* +D®),
we have a telescoping inversion formula

A~ = E@(EREODYFY) BV (F@)r 4+ D) (V@) B

Block structure of factorization:
u® u® y® g V(l) BV (V(2) B(? V(3)) D)

T e

All matrices are now block diagonal except If)(o), which 1s small.

Formal definition of a Hierarchically Block Separable (HBS) matrix
Suppose T is a binary tree on the index vector I = [1, 2, 3, ..., NJ.

For a node 7 in the tree, let I denote the corresponding index vector.

Level 0 ..., 400]

Level 1 ..., 200], Iz = [201, 202, ..., 4(
Level 2 ..., 100], Is = [101, 102, ..., 2
Level 3 .., 50], Iy = [51, 52, ..., 100],

Numbering of nodes in a fully populated binary tree with L = 3 levels.
The root is the original index vector I = I, = [1, 2, ..., 400].

Formal definition of a Hierarchically Block Separable (HBS) matrix
Suppose 7T is a binary tree.
For a node 7 in the tree, let I denote the corresponding index vector.

For leaves o and 7, set A, = A(l,,I;) and suppose that all off-diagonal blocks
satisty

~

A, = U, A, V; oF£T

nxXn nxk kxk kxn

For non-leaves o and 7, let {01,092} denote the children of o, and let {7, >}
denote the children of 7. Set

~ ~

Aal yT1 Aal s T2
Aa T —

9 ~ ~

AU2a7-1 A0'2>7'2

Then suppose that the off-diagonal blocks satisfy

~

A, = U, A, - \jl oFT
2k x 2k 2k x k kxk kx2k

Name: | Size: Function:

For each leaf D. nxmn The diagonal block A(I,,I;).

node T: U- n Xk Basis for the columns in the blocks in row 7.
V., n x k Basis for the rows in the blocks in column 7.

For each parent | B 2k x 2k | Interactions between the children of 7.

node 7: U, 2k x k| Basis for the columns in the (reduced) blocks in row 7.
Vv 2k x k| Basis for the rows in the (reduced) blocks in column 7.

2

An HBS matrix A with a tree T is fully specified if the factors listed above are provided.

Generate an N x ¢ Gaussian random matrix Q. (think ¢ = £ + 10)
Evaluate S = A Q using the fast matrix-vector multiplier.
loop over levels, finer to coarser, f =L, L —1,...,2,1

loop over all nodes 7 on level /¢

if 7 is a leaf node then

Loec = I~
Qioc = Q(I,:)
Sioce = S(Ur,:) — A(l+, 1) Qioc
else
Let v1 and v2 be the two children of 7.
Lo = [jul, jl/g]
Qo = b
Q,,
Sloc _ SV1 - A(j:’/l) j}/z) QV2
SV2 - A(IV27IV1) QVl
end if
[U., J,] = interpolate(S},.) (i.e. perform RRQR and form R;;'Ri2)
Q, = U7 Qo
S: = Siec(Jr,:)
I = Loo(J7)
end loop

end loop
For all leaf nodes 7, set D, = A(I,, I,).
For all sibling pairs {v1, v2} set By, v, = A(f,,l, fm).

The asymptotic cost of applying the algorithm to an N x N matrix A is
Tiotal ~ Tonats X 2 (k +10) + Trana X N (k4 10) + Tontry X 2Nk + Thop X ¢ N k2,
where k is an upper bound for the rank of an off-diagonal block of A, and where

Tiota1 1s the total execution time

Tt 1s the cost of a matrix-vector multiply involving A
Trana 1s the cost of “drawing” a Gaussian random number
Tentry 1s the cost of evaluating an entry of A

Thop 1s the cost of a flop

Important: The matrix vector multiplies can all be executed in parallel.
Specifically, you only need to compute the two matrix-matrix products
A Q A* Q

and
N x N N x (k+10) N x N N x (k+10)

Numerical example

Let A be a discrete approximations of the boundary integral operator

(3) [Tul(x) = au(x) + /F K(z,y)u(y) ds(y), zel,

where I' is the contour shown below, and o and K are chosen as either one of the
following two options:

4) a=0 and K(z,y)=log|z — vy (the “single layer” kernel)
5) a=1/2 and K(z,y) = (n(y) - (x —y))/|x —y|> (the “double layer” kernel)

For y € I', n(y) denotes the unit normal of I' at y. The single layer operator was

discretized via the trapezoidal rule with a Kapur-Rokhlin end-point modification of the
6* order for handling the singularity in the kernel k(x,y) as y approaches x, resulting in a

symmetric coefficient matrix.

The contour I

Numerical example: implementation details
A is a discrete approximation to a boundary integral operator.

The sample matrices S = AQ and S’ = A*Q were evaluated via the Fast Multipole
Method. Observe that two calls to the FMM is sufficient.

The randomized hierarchical procedure was used to compute an approximant

A@PPTOX) iy hierarchically block separable format.

Using a power iteration the following error metric was computed:

| — Al
L

€1

Hardware: A single processor 3.2GHz Pentium IV with 2GB of RAM.

Results: The double layer potential (a well-conditioned matrix)

e=10"°, ¢ =50
N | Teompression | Tiwersion | Tmatvee | [[A™PP]| | |G| 1 2
400 0.047 0.031 0.000 1.04 3.6 | 2.6e-6 | 5.5e-6
800 0.094 0.031 0.016 1.04 3.6 | 3.1e-6 | 6.5e-6
1600 0.219 0.094 0.000 1.04 3.0 | 2.9e-6 | 6.3e-6
3200 0.406 0.140 0.016 1.04 3.5 | 2.6e-6 | 5.4e-6
6400 0.844 0.297 0.031 1.04 3.5 | 3.4e-6 | 7.6e-6
12800 1.688 0.578 0.062 1.04 3.6 | 3.6e-6 | 7.8¢e-6
25600 3.344 1.156 0.141 1.04 3.3 | 3.4e-6 | 7.3e-6

e=10"19, ¢ =100
N | Teompression | Tinversion | Twmatvee | [|[ACPP)] | |G| el €2
400 0.093 0.032 0.000 1.04 3.6 | 2.1e-11 | 4.5e-11
800 0.156 0.079 0.000 1.04 3.6 | 2.0e-11 | 4.4e-11
1600 0.297 0.109 0.016 1.04 3.6 | 1.5e-11 | 3.1e-11
3200 0.579 0.203 0.015 1.04 3.4 | 1.9e-11 | 4.0e-11
6400 1.094 0.344 0.047 1.04 3.6 | 2.5e-11 | 5.2e-11
12800 2.141 0.687 0.078 1.04 3.6 | 2.0e-11 | 4.2e-11
25600 4.093 1.266 0.141 1.04 3.6 | 3.4e-11 | 7.1e-11

Times in seconds. Recall e1 = IA-ATPPI| es = ||l — AG||, where G ~ A™!,

1A

Observation: The FMM itself is much slower than the HBS algebral!

N =800 | N=1600 | N=3200| N=6400 | N =12800 | N = 25600
Nyee = 1 1.328 1.891 2.875 4.531 7.343 13.266
Nyee = 50 1.500 2.266 3.578 5.969 10.531 19.375
Nyee = 100 1.656 2.563 4.110 7.062 12.844 23.891

Time i1n seconds required by our implementation of the FMM to apply a

matrixz of size N X N to Nye. vectors simultaneously. The FMM uses

multipole expansions of length 40, leading to about 15 accurate digits.

Observation:

Being able to compute the £ matvecs in parallel is highly advantageous.

Numerical example: Inversion of HBS-matrix

We performed an HBS inversion to compute

G ~ (A(approx)) !

and evaluated the error metric

€9 — Hl —AGH

Results: The double layer potential (a well-conditioned matrix)

e=10"°, ¢ =50
N | Teompression | Tiwersion | Tmatvee | [[A™PP]| | |G| 1 2
400 0.047 0.031 0.000 1.04 3.6 | 2.6e-6 | 5.5e-6
800 0.094 0.031 0.016 1.04 3.6 | 3.1e-6 | 6.5e-6
1600 0.219 0.094 0.000 1.04 3.0 | 2.9e-6 | 6.3e-6
3200 0.406 0.140 0.016 1.04 3.5 | 2.6e-6 | 5.4e-6
6400 0.844 0.297 0.031 1.04 3.5 | 3.4e-6 | 7.6e-6
12800 1.688 0.578 0.062 1.04 3.6 | 3.6e-6 | 7.8¢e-6
25600 3.344 1.156 0.141 1.04 3.3 | 3.4e-6 | 7.3e-6

e=10"19, ¢ =100
N | Teompression | Tinversion | Twmatvee | [|[ACPP)] | |G| el €2
400 0.093 0.032 0.000 1.04 3.6 | 2.1e-11 | 4.5e-11
800 0.156 0.079 0.000 1.04 3.6 | 2.0e-11 | 4.4e-11
1600 0.297 0.109 0.016 1.04 3.6 | 1.5e-11 | 3.1e-11
3200 0.579 0.203 0.015 1.04 3.4 | 1.9e-11 | 4.0e-11
6400 1.094 0.344 0.047 1.04 3.6 | 2.5e-11 | 5.2e-11
12800 2.141 0.687 0.078 1.04 3.6 | 2.0e-11 | 4.2e-11
25600 4.093 1.266 0.141 1.04 3.6 | 3.4e-11 | 7.1e-11

Times in seconds. Recall e1 = IA-ATPPI| es = ||l — AG||, where G ~ A™!,

1A

Results: The single layer potential (an ill-conditioned matrix)

e=10"°, ¢ =50
N | Teompression | Tinversion | Tmatvec | ||[APPP)(| | |G| e1 €2
400 0.047 0.031 | 0.000 1.23 | 6.4e3 | 5.1e-6 | 2.9e-3
800 0.078 0.063 | 0.000 0.77 | 1.4ed4 | 5.2e-6 | 2.4e-3
1600 0.140 0.141 | 0.016 0.57 | 1.6e5 | 1.1e-5 | 2.0e-2
3200 0.297 0.297 | 0.031 0.57 | 2.3e5 | 5.8e-6 | 1.2e-2
6400 0.625 0.625 | 0.062 0.57 | 1.1e6 | 2.9e-6 | 1.4e-2
12800 1.281 1.328 | 0.141 0.57 | 4.2¢6 | 3.5e-6 | 8.0e-2
25600 2.625 2.875 | 0.265 0.57 | 5.6e6 | 6.5e-6 | 1.2¢-1
e=10"10 ¢ =100
N | Teompression | Tinversion | Tmatvee | ||[AEPP)(| | [|G]| e1 €2
400 0.047 0.047 | 0.000 1.24 | 6.4e3 | 3.3e-11 | 1.5e-8
800 0.109 0.094 | 0.000 0.75 | 1.4e4 | 4.3e-11 | 2.0e-8
1600 0.203 0.203 | 0.032 0.57 | 1.6e5 | 4.3e-11 | 1.2e-7
3200 0.422 0.406 | 0.031 0.57 | 2.3e5 | 4.3e-11 | 1.2e-5
6400 0.843 0.844 | 0.078 0.57 | 1.1e6 | 4.4e-11 | 4.6e-5
12800 1.687 1.703 | 0.141 0.57 | 4.2¢6 | 3.3e-11 | 2.2e-4
25600 3.407 3.547 | 0.266 0.57 | 5.6e6 | 2.6e-11 | 2.0e-5
_ ||[A—Alapprox)|

Times in seconds. Recall e; = and es = ||| — AG||, where G ~ A~ 1.

1A

Key points:

1. Finding spanning rows and columns of a large matrix can be very useful.
e Faster algorithms.
e Data interpretation.

e Factorizations that preserve structure (e.g. sparsity).

2. There are many different factorizations to choose from.

Take care to not introduce instabilities unnecessarily.

3. Finding “tight” factorizations is a delicate but well-studied subject.

More relaxed formulations admit very easy algorithms and are often adequate.

4. Randomized sampling + row/column selection is a powerful combination.

e Approximation of Hierarchically Block Separable matrices.

References:

e N. Halko, P.G. Martinsson, J. Tropp: Finding structure with randomness:

Probabilistic algorithms for constructing approximate matriz decompositions STAM
Review, 53(2), pp. 217-288, 2011.

e P.G. Martinsson: Approximation of Structured Matrices via Randomized Sampling
(arXiv.org #0806.2339) To appear in the STAM Journal on Matrix Analysis and
applications.

e H. Cheng, Z. Gimbutas, P.G. Martinsson, V. Rokhlin, On the compression of low
rank matrices STAM Journal of Scientific Computing, 26(4), pp. 1389-1404, 2005

e M. Gu and S.C. Eisenstat: Efficient algorithms for computing a strong rank-revealing
QR factorization STAM J. Sci. Comput. 17 (1996), no. 4, 848869.

e Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert, A fast randomized
algorithm for the approximation of matrices Applied and Computational Harmonic
Analysis, 25 (3): 335-366, 2008.

e N. Ailon and B. Chagzelle, Approrimate nearest neighbors and the fast
JohnsonLindenstrauss transform in Proceedings of the 38th Annual ACM
Symposium on Theory of Computing (STOC 06), 2006, pp. 557563.

